Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.
CAS
PubMed
PubMed Central
Google Scholar
Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, Heublein S, et al. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt Int. 2016;113(10):159–66.
Google Scholar
Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.
Article
CAS
PubMed
Google Scholar
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.
Article
PubMed
Google Scholar
Steinhagen F, Schmidt SV, Schewe JC, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis - brake or accelerate? Pharmacol Ther. 2020;208: 107476.
Article
CAS
PubMed
Google Scholar
David S, Stahl K. To remove and replace-a role for plasma exchange in counterbalancing the host response in sepsis. Crit Care (London, England). 2019;23(1):14.
Article
CAS
Google Scholar
Stahl K, Bode C, David S. Extracorporeal strategies in sepsis treatment: role of therapeutic plasma exchange. Anasthesiol Intensivmed Notfallmed Schmerzther AINS. 2021;56(2):101–10.
Article
PubMed
Google Scholar
Stahl K, Schmidt JJ, Seeliger B, Schmidt BMW, Welte T, Haller H, et al. Effect of therapeutic plasma exchange on endothelial activation and coagulation-related parameters in septic shock. Crit Care (London, England). 2020;24(1):71.
Article
Google Scholar
Knaup H, Stahl K, Schmidt BMW, Idowu TO, Busch M, Wiesner O, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care (London, England). 2018;22(1):285.
Article
Google Scholar
Stahl K, Bikker R, Seeliger B, Schmidt JJ, Schenk H, Schmidt BMW, et al. Effect of therapeutic plasma exchange on immunoglobulin deficiency in early and severe septic shock. J Intensive Care Med. 2020;36:1491–7.
Article
PubMed
Google Scholar
Rimmer E, Houston BL, Kumar A, Abou-Setta AM, Friesen C, Marshall JC, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit care (London, England). 2014;18(6):699.
Article
Google Scholar
Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28(10):1434–9.
Article
PubMed
Google Scholar
Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing committee of the american society for apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.
PubMed
Google Scholar
David S, Bode C, Putensen C, Welte T, Stahl K. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021;47(3):352–4.
Article
PubMed
PubMed Central
Google Scholar
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.
Article
CAS
PubMed
PubMed Central
Google Scholar
David S, Hoeper MM, Kielstein JT. Plasma exchange in treatment refractory septic shock : presentation of a therapeutic add-on strategy. Med Klinik Intensivmed Notfallmed. 2017;112(1):42–6.
Article
CAS
Google Scholar
Kaplan AA. A simple and accurate method for prescribing plasma exchange. ASAIO Trans. 1990;36(3):M597–9.
CAS
PubMed
Google Scholar
McIntosh AM, Tong S, Deakyne SJ, Davidson JA, Scott HF. Validation of the vasoactive-inotropic score in pediatric sepsis. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017;18(8):750–7.
Google Scholar
Keith PD, Wells AH, Hodges J, Fast SH, Adams A, Scott LK. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Crit Care (London, England). 2020;24(1):518.
Article
Google Scholar
Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas SA, Lange T, Saugel B, Petzoldt M, Fuhrmann V, Metschke M, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med. 2016;42(2):202–10.
Article
CAS
PubMed
Google Scholar
Nylen ES, Whang KT, Snider RH Jr, Steinwald PM, White JC, Becker KL. Mortality is increased by procalcitonin and decreased by an antiserum reactive to procalcitonin in experimental sepsis. Crit Care Med. 1998;26(6):1001–6.
Article
CAS
PubMed
Google Scholar
Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. Br J Pharmacol. 2010;159(2):253–64.
Article
CAS
PubMed
Google Scholar
Adamik B, Smiechowicz J, Jakubczyk D, Kübler A. Elevated serum PCT in septic shock with endotoxemia is associated with a higher mortality rate. Medicine. 2015;94(27): e1085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. Caring for the critically ill patient. high-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286(15):1869–78.
Article
CAS
PubMed
Google Scholar
Hayakawa M, Kudo D, Saito S, Uchino S, Yamakawa K, Iizuka Y, et al. Antithrombin supplementation and mortality in sepsis-induced disseminated intravascular coagulation: a multicenter retrospective observational study. Shock (Augusta, Ga). 2016;46(6):623–31.
Article
CAS
Google Scholar
Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost JTH. 2014;12(9):1470–9.
Article
CAS
PubMed
Google Scholar
Wiedermann CJ, Hoffmann JN, Juers M, Ostermann H, Kienast J, Briegel J, et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med. 2006;34(2):285–92.
Article
CAS
PubMed
Google Scholar
Shorr AF, Bernard GR, Dhainaut JF, Russell JR, Macias WL, Nelson DR, et al. Protein C concentrations in severe sepsis: an early directional change in plasma levels predicts outcome. Crit care (London, England). 2006;10(3):R92.
Article
Google Scholar
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.
Article
CAS
PubMed
Google Scholar
Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–64.
Article
CAS
PubMed
Google Scholar
Brunkhorst FM, Patchev V. Sepsis-associated Purpura Fulminans International Registry-Europe (SAPFIRE). Medizinische Klinik, Intensivmedizin und Notfallmedizin. 2014;109(8):591–5.
Article
CAS
PubMed
Google Scholar
Knoebl P, Schellongowski P, Staudinger T, Sperr WR, Scheibenpflug C. Treatment of infection-associated purpura fulminans with protein C zymogen is associated with a high survival rate. Blood. 2013;122(21):3606.
Article
Google Scholar
Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94.
Article
CAS
PubMed
Google Scholar
Aibar J, Castro P, Espinosa G, Fernández S, Hernández C, Rinaudo M, et al. ADAMTS-13 in critically Ill patients with septic syndromes and noninfectious systemic inflammatory response syndrome. Shock (Augusta, Ga). 2015;43(6):556–62.
Article
CAS
Google Scholar
Bockmeyer CL, Claus RA, Budde U, Kentouche K, Schneppenheim R, Lösche W, et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von willebrand factor. Haematologica. 2008;93(1):137–40.
Article
CAS
PubMed
Google Scholar
Kremer Hovinga JA, Zeerleder S, Kessler P, Romani de Wit T, van Mourik JA, Hack CE, et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost JTH. 2007;5(11):2284–90.
Article
CAS
PubMed
Google Scholar
Peetermans M, Meyers S, Liesenborghs L, Vanhoorelbeke K, De Meyer SF, Vandenbriele C, et al. Von Willebrand factor and ADAMTS13 impact on the outcome of staphylococcus aureus sepsis. J Thromb Haemost JTH. 2020;18(3):722–31.
Article
CAS
PubMed
Google Scholar
Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.
Article
CAS
PubMed
Google Scholar
Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P, et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit care (London, England). 2013;17(6):R273.
Article
Google Scholar
Lin JJ, Chan OW, Hsiao HJ, Wang Y, Hsia SH, Chiu CH. Decreased ADAMTS 13 activity is associated with disease severity and outcome in pediatric severe sepsis. Medicine. 2016;95(16): e3374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claus RA, Bockmeyer CL, Budde U, Kentouche K, Sossdorf M, Hilberg T, et al. Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb Haemost. 2009;101(2):239–47.
Article
CAS
PubMed
Google Scholar
Stiehl T, Thamm K, Kaufmann J, Schaeper U, Kirsch T, Haller H, et al. Lung-targeted RNA interference against angiopoietin-2 ameliorates multiple organ dysfunction and death in sepsis. Crit Care Med. 2014;42(10):e654–62.
Article
CAS
PubMed
Google Scholar
David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. Crit Care Med. 2012;40(11):3034–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park JK, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit care (London, England). 2011;15(5):R261.
Article
Google Scholar
Kümpers P, Hafer C, David S, Hecker H, Lukasz A, Fliser D, et al. Angiopoietin-2 in patients requiring renal replacement therapy in the ICU: relation to acute kidney injury, multiple organ dysfunction syndrome and outcome. Intensive Care Med. 2010;36(3):462–70.
Article
PubMed
CAS
Google Scholar
Alawo DOA, Tahir TA, Fischer M, Bates DG, Amirova SR, Brindle NPJ. Regulation of angiopoietin signalling by soluble Tie2 ectodomain and engineered ligand trap. Sci Rep. 2017;7(1):3658.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aydin K, Korkmaz S, Erkurt MA, Sarici A, Ekinci O, Baysal NA, et al. Apheresis in patients with sepsis: a multicenter retrospective study transfusion and apheresis science: official journal of the world apheresis association: official. J Eur Soc Haemapheresis. 2021;2021:103239.
Google Scholar
Peters-Sengers H, Butler JM, Uhel F, Schultz MJ, Bonten MJ, Cremer OL, et al. Source-specific host response and outcomes in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med. 2022;48(1):92–102.
Article
CAS
PubMed
Google Scholar
Reeves JH, Butt WW, Shann F, Layton JE, Stewart A, Waring PM, et al. Continuous plasmafiltration in sepsis syndrome. plasmafiltration in sepsis study group. Crit Care Med. 1999;27(10):2096–104.
Article
CAS
PubMed
Google Scholar
Nguyen TC, Han YY, Kiss JE, Hall MW, Hassett AC, Jaffe R, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long EJ, Taylor A, Delzoppo C, Shann F, Pearson G, Buckley D, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc J Australas Acad Crit Care Med. 2013;15(3):198–204.
Google Scholar
Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, et al. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the writing committee of the american society for apheresis: the eighth special issue. J Clin Apher. 2019;34(3):171–354.
Article
PubMed
Google Scholar
Mokrzycki MH, Kaplan AA. Therapeutic plasma exchange: complications and management. Am J Kidney Dis. 1994;23(6):817–27.
Article
CAS
PubMed
Google Scholar
Shemin D, Briggs D, Greenan M. Complications of therapeutic plasma exchange: a prospective study of 1727 procedures. J Clin Apher. 2007;22(5):270–6.
Article
PubMed
Google Scholar
Schmidt JJ, Asper F, Einecke G, Eden G, Hafer C, Kielstein JT. Therapeutic plasma exchange in a tertiary care center: 185 patients undergoing 912 treatments - a one-year retrospective analysis. BMC Nephrol. 2018;19(1):12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stahl K, Wendel-Garcia PD, Bode C, David S. Unraveling the secret of re-balancing homeostasis in sepsis: a critical view on extracorporeal blood purification modalities. Intensive Care Med. 2021;48:1–3.
Google Scholar