Shinozaki K, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Abe R, Tateishi Y, Hattori N, Shimada T, Hirasawa H: S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review. Crit Care 2009, 13: R121. 10.1186/cc7973
PubMed Central
PubMed
Google Scholar
Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P, Vajkoczy P, Kreisel S, Brunner J, Schmiedek P, Hennerici M: Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 2001, 70: 534-537. 10.1136/jnnp.70.4.534
PubMed Central
CAS
PubMed
Google Scholar
Weiss N, Sanchez-Pena P, Roche S, Beaudeux JL, Colonne C, Coriat P, Puybasset L: Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology 2006, 104: 658-666. 10.1097/00000542-200604000-00008
CAS
PubMed
Google Scholar
Fountas KN, Tasiou A, Kapsalaki EZ, Paterakis KN, Grigorian AA, Lee GP, Robinson JS Jr: Serum and cerebrospinal fluid C-reactive protein levels as predictors of vasospasm in aneurysmal subarachnoid hemorrhage, Clinical article. Neurosurg Focus 2009, 26: E22. 10.3171/2009.2.FOCUS08311
PubMed
Google Scholar
Chou SH, Feske SK, Simmons SL, Konigsberg RG, Orzell SC, Marckmann A, Bourget G, Bauer DJ, De Jager PL, Du R, Arai K, Lo EH, Ning MM: Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res 2011, 2: 600-607. 10.1007/s12975-011-0117-x
PubMed Central
CAS
PubMed
Google Scholar
Witkowska AM, Borawska MH, Socha K, Kochanowicz J, Mariak Z, Konopka M: TNF-alpha and sICAM-1 in intracranial aneurismal rupture. Arch Immunol Ther Exp (Warsz) 2009, 57: 137-140. 10.1007/s00005-009-0010-4
CAS
Google Scholar
Kaynar MY, Tanriverdi T, Kafadar AM, Kacira T, Uzun H, Aydin S, Gumustas K, Dirican A, Kuday C: Detection of soluble intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in both cerebrospinal fluid and serum of patients after aneurysmal subarachnoid hemorrhage. J Neurosurg 2004, 101: 1030-1036. 10.3171/jns.2004.101.6.1030
CAS
PubMed
Google Scholar
Kessler IM, Pacheco YG, Lozzi SP, de Araujo AS Jr, Onishi FJ, de Mello PA: Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Surg Neurol 2005,64(Suppl 1):S1:2-S1:5. discussion S1:5
Google Scholar
Lewis SB, Wolper RA, Miralia L, Yang C, Shaw G: Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2008, 28: 1261-1271. 10.1038/jcbfm.2008.12
CAS
PubMed
Google Scholar
Kay A, Petzold A, Kerr M, Keir G, Thompson E, Nicoll J: Decreased cerebrospinal fluid apolipoprotein E after subarachnoid hemorrhage: correlation with injury severity and clinical outcome. Stroke 2003, 34: 637-642. 10.1161/01.STR.0000057579.25430.16
CAS
PubMed
Google Scholar
Yarlagadda S, Rajendran P, Miss JC, Banki NM, Kopelnik A, Wu AH, Ko N, Gelb AW, Lawton MT, Smith WS, Young WL, Zaroff JG: Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care 2006, 5: 102-107. 10.1385/NCC:5:2:102
PubMed
Google Scholar
Nakagawa I, Kurokawa S, Nakase H: Hyponatremia is predictable in patients with aneurysmal subarachnoid hemorrhage – clinical significance of serum atrial natriuretic peptide. Acta Neurochir (Wien) 2010, 152: 2147-2152. 10.1007/s00701-010-0735-1
Google Scholar
McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT: Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 2002, 51: 1128-1134. discussion 1134–1135 10.1097/00006123-200211000-00005
PubMed
Google Scholar
Fergusen S, Macdonald RL: Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 2007, 60: 658-667. discussion 667
PubMed
Google Scholar
Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL: Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007, 38: 2315-2321. 10.1161/STROKEAHA.107.484360
PubMed
Google Scholar
Liszczak TM, Varsos VG, Black PM, Kistler JP, Zervas NT: Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg 1983, 58: 18-26. 10.3171/jns.1983.58.1.0018
CAS
PubMed
Google Scholar
Takemae T, Branson PJ, Alksne JF: Intimal proliferation of cerebral arteries after subarachnoid blood injection in pigs. J Neurosurg 1984, 61: 494-500. 10.3171/jns.1984.61.3.0494
CAS
PubMed
Google Scholar
Macdonald RL, Pluta RM, Zhang JH: Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 2007, 3: 256-263.
CAS
PubMed
Google Scholar
Dhar R, Diringer MN: The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care 2008, 8: 404-412. 10.1007/s12028-008-9054-2
PubMed Central
PubMed
Google Scholar
Lad SP, Hegen H, Gupta G, Deisenhammer F, Steinberg GK: Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 2012, 21: 30-41. 10.1016/j.jstrokecerebrovasdis.2010.04.004
PubMed
Google Scholar
Fassbender K, Ries S, Schminke U, Schneider S, Hennerici M: Inflammatory cytokines in CSF in bacterial meningitis: association with altered blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 1996, 61: 57-61. 10.1136/jnnp.61.1.57
PubMed Central
CAS
PubMed
Google Scholar
Peterson JW, Kwun BD, Teramura A, Hackett JD, Morgan JA, Nishizawa S, Bun T, Zervas NT: Immunological reaction against the aging human subarachnoid erythrocyte, A model for the onset of cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 1989,71(5 Pt 1):718-726.
CAS
PubMed
Google Scholar
Kasuya H, Shimizu T: Activated complement components C3a and C4a in cerebrospinal fluid and plasma following subarachnoid hemorrhage. J Neurosurg 1989,71(5 Pt 1):741-746.
CAS
PubMed
Google Scholar
Schoch B, Regel JP, Wichert M, Gasser T, Volbracht L, Stolke D: Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery 2007, 60: 828-836. discussion 828–836
PubMed
Google Scholar
Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P: Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2010, 13: 339-346. 10.1007/s12028-010-9432-4
CAS
PubMed
Google Scholar
Levin ER, Gardner DG, Samson WK: Natriuretic peptides. N Engl J Med 1998, 339: 321-328. 10.1056/NEJM199807303390507
CAS
PubMed
Google Scholar
Taub PR, Fields JD, Wu AH, Miss JC, Lawton MT, Smith WS, Young WL, Zaroff JG, Ko NU: Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage. Neurocrit Care 2011, 15: 13-18. 10.1007/s12028-011-9535-6
PubMed Central
CAS
PubMed
Google Scholar
Zakynthinos E, Kiropoulos T, Gourgoulianis K, Filippatos G: Diagnostic and prognostic impact of brain natriuretic peptide in cardiac and noncardiac diseases. Heart Lung 2008, 37: 275-285. 10.1016/j.hrtlng.2007.05.010
PubMed
Google Scholar
de Bold AJ: Cardiac natriuretic peptides gene expression and secretion in inflammation. J Investig Med 2009, 57: 29-32.
PubMed
Google Scholar
Berendes E, Walter M, Cullen P, Prien T, Van Aken H, Horsthemke J, Schulte M, von Wild K, Scherer R: Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. Lancet 1997, 349: 245-249. 10.1016/S0140-6736(96)08093-2
CAS
PubMed
Google Scholar
Tomida M, Muraki M, Uemura K, Yamasaki K: Plasma concentrations of brain natriuretic peptide in patients with subarachnoid hemorrhage. Stroke 1998, 29: 1584-1587. 10.1161/01.STR.29.8.1584
CAS
PubMed
Google Scholar
Sviri GE, Shik V, Raz B, Soustiel JF: Role of brain natriuretic peptide in cerebral vasospasm. Acta Neurochir (Wien) 2003, 145: 851-860. discussion 860 10.1007/s00701-003-0101-7
Google Scholar
Wysocki SJ, Zheng MH, Smith A, Norman PE: Vascular endothelial growth factor (VEGF) expression during arterial repair in the pig. Eur J Vasc Endovasc Surg 1998, 15: 225-230. 10.1016/S1078-5884(98)80180-9
CAS
PubMed
Google Scholar
Martin J: Learning from vascular remodelling. Clin Exp Allergy 2000,30(Suppl 1):33-36.
PubMed
Google Scholar
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2: 737-744. 10.1038/35036374
PubMed Central
CAS
PubMed
Google Scholar
Zempo N, Koyama N, Kenagy RD, Lea HJ, Clowes AW: Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vasc Biol 1996, 16: 28-33.
CAS
PubMed
Google Scholar
Adner M, Jansen I, Edvinsson L: Endothelin-A receptors mediate contraction in human cerebral, meningeal and temporal arteries. J Auton Nerv Syst 1994,49(Suppl):S117-S121.
CAS
PubMed
Google Scholar
Suzuki K, Meguro K, Sakurai T, Saitoh Y, Takeuchi S, Nose T: Endothelin-1 concentration increases in the cerebrospinal fluid in cerebral vasospasm caused by subarachnoid hemorrhage. Surg Neurol 2000, 53: 131-135. 10.1016/S0090-3019(99)00179-2
CAS
PubMed
Google Scholar
Kastner S, Oertel MF, Scharbrodt W, Krause M, Boker DK, Deinsberger W: Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien) 2005, 147: 1271-1279. discussion 1279 10.1007/s00701-005-0633-0
CAS
Google Scholar
Mascia L, Fedorko L, Stewart DJ, Mohamed F, TerBrugge K, Ranieri VM, Wallace MC: Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke 2001, 32: 1185-1190. 10.1161/01.STR.32.5.1185
CAS
PubMed
Google Scholar
Zanier ER, Refai D, Zipfel GJ, Zoerle T, Longhi L, Esparza TJ, Spinner ML, Bateman RJ, Brody DL, Stocchetti N: Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2011, 82: 157-159. 10.1136/jnnp.2009.177667
PubMed Central
CAS
PubMed
Google Scholar
Guo J, Shi Z, Yang K, Tian JH, Jiang L: Endothelin receptor antagonists for subarachnoid hemorrhage. Cochrane Database Syst Rev 2012, 9: CD008354.
PubMed
Google Scholar
Sills AK Jr, Clatterbuck RE, Thompson RC, Cohen PL, Tamargo RJ: Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery 1997, 41: 453-460. discussion 460–461 10.1097/00006123-199708000-00025
PubMed
Google Scholar
Nissen JJ, Mantle D, Gregson B, Mendelow AD: Serum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies. J Neurol Neurosurg Psychiatry 2001, 71: 329-333. 10.1136/jnnp.71.3.329
PubMed Central
CAS
PubMed
Google Scholar
Oshiro EM, Hoffman PA, Dietsch GN, Watts MC, Pardoll DM, Tamargo RJ: Inhibition of experimental vasospasm with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke 1997, 28: 2031-2037. discussion 2037–2038 10.1161/01.STR.28.10.2031
CAS
PubMed
Google Scholar
Rothoerl RD, Schebesch KM, Kubitza M, Woertgen C, Brawanski A, Pina AL: ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis 2006, 22: 143-149. 10.1159/000093243
CAS
PubMed
Google Scholar
Van Geel WJ, Rosengren LE, Verbeek MM: An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 2005, 296: 179-185. 10.1016/j.jim.2004.11.015
CAS
PubMed
Google Scholar
Petzold A, Shaw G: Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J Immunol Methods 2007, 319: 34-40. 10.1016/j.jim.2006.09.021
CAS
PubMed
Google Scholar
Petzold A, Keir G, Kay A, Kerr M, Thompson EJ: Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2006, 77: 753-759. 10.1136/jnnp.2005.085175
PubMed Central
CAS
PubMed
Google Scholar
Pike BR, Flint J, Dave JR, Lu XC, Wang KK, Tortella FC, Hayes RL: Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2004, 24: 98-106.
CAS
PubMed
Google Scholar
Lewis SB, Velat GJ, Miralia L, Papa L, Aikman JM, Wolper RA, Firment CS, Liu MC, Pineda JA, Wang KK, Hayes RL: Alpha-II spectrin breakdown products in aneurysmal subarachnoid hemorrhage: a novel biomarker of proteolytic injury. J Neurosurg 2007, 107: 792-796. 10.3171/JNS-07/10/0792
CAS
PubMed
Google Scholar
Donato R: S-100 proteins. Cell Calcium 1986, 7: 123-145. 10.1016/0143-4160(86)90017-5
CAS
PubMed
Google Scholar
Rustandi RR, Drohat AC, Baldisseri DM, Wilder PT, Weber DJ: The Ca(2+)-dependent interaction of S100B(beta beta) with a peptide derived from p53. Biochemistry 1998, 37: 1951-1960. 10.1021/bi972701n
CAS
PubMed
Google Scholar
Moritz S, Warnat J, Bele S, Graf BM, Woertgen C: The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol 2010, 22: 21-31. 10.1097/ANA.0b013e3181bdf50d
PubMed
Google Scholar
Siman R, Giovannone N, Toraskar N, Frangos S, Stein SC, Levine JM, Kumar MA: Evidence that a panel of neurodegeneration biomarkers predicts vasospasm, infarction, and outcome in aneurysmal subarachnoid hemorrhage. PLoS One 2011, 6: e28938. 10.1371/journal.pone.0028938
PubMed Central
CAS
PubMed
Google Scholar
Goyal A, Failla MD, Niyonkuru C, Amin K, Fabio A, Berger RP, Wagner AK: S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J Neurotrauma 2013, 30: 946-957. 10.1089/neu.2012.2579
PubMed Central
PubMed
Google Scholar
Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H: GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 2004, 21: 1553-1561. 10.1089/neu.2004.21.1553
PubMed
Google Scholar
Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM: Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 2004, 62: 1303-1310. 10.1212/01.WNL.0000120550.00643.DC
CAS
PubMed
Google Scholar
Guzel A, Er U, Tatli M, Aluclu U, Ozkan U, Duzenli Y, Satici O, Guzel E, Kemaloglu S, Ceviz A, Kaplan A: Serum neuron-specific enolase as a predictor of short-term outcome and its correlation with Glasgow Coma Scale in traumatic brain injury. Neurosurg Rev 2008, 31: 439-444. discussion 444–445 10.1007/s10143-008-0148-2
PubMed
Google Scholar
Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK: Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 2010, 38: 138-144. 10.1097/CCM.0b013e3181b788ab
PubMed Central
CAS
PubMed
Google Scholar
Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas J 3rd, Buki A, Robertson C, Tortella FC, Hayes RL, Wang KK: Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 2011, 28: 861-870. 10.1089/neu.2010.1564
PubMed Central
PubMed
Google Scholar
Mondello S, Akinyi L, Buki A, Robicsek S, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, Wang KK: Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 2012, 70: 666-675.
PubMed Central
PubMed
Google Scholar
Thomas DG, Palfreyman JW, Ratcliffe JG: Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1978, 1: 113-115.
CAS
PubMed
Google Scholar
Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T: Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol 1995, 43: 267-270. discussion 270–271 10.1016/0090-3019(95)80012-6
CAS
PubMed
Google Scholar
Liliang PC, Liang CL, Weng HC, Lu K, Wang KW, Chen HJ, Chuang JH: Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 2010, 160: 302-307. 10.1016/j.jss.2008.12.022
CAS
PubMed
Google Scholar
Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM, Tepas JJ, Wang KK, Robertson CS, Hayes RL: Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007, 24: 354-366. 10.1089/neu.2006.003789
PubMed
Google Scholar
Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, Robertson C, Buki A, Scharf D, Jixiang M, Akinyi L, Muller U, Wang KK, Hayes RL: alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 2010, 27: 1203-1213. 10.1089/neu.2010.1278
PubMed Central
PubMed
Google Scholar
Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, Nellgard P, Rosengren L, Blennow K, Nellgard B: Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 2006, 67: 1600-1604. 10.1212/01.wnl.0000242732.06714.0f
CAS
PubMed
Google Scholar
Zetterberg H, Smith DH, Blennow K: Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013, 9: 201-210. 10.1038/nrneurol.2013.9
PubMed Central
CAS
PubMed
Google Scholar
Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D'Alimonte I, D'Onofrio M, Nicoletti F, Caciagli F: Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 1999, 27: 275-281. 10.1002/(SICI)1098-1136(199909)27:3<275::AID-GLIA9>3.0.CO;2-0
CAS
PubMed
Google Scholar
Whitaker-Azmitia PM, Murphy R, Azmitia EC: Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology. Brain Res 1990, 528: 155-158. 10.1016/0006-8993(90)90210-3
CAS
PubMed
Google Scholar
Suzuki F, Kato K, Kato T, Ogasawara N: S-100 protein in clonal astroglioma cells is released by adrenocorticotropic hormone and corticotropin-like intermediate-lobe peptide. J Neurochem 1987, 49: 1557-1563. 10.1111/j.1471-4159.1987.tb01027.x
CAS
PubMed
Google Scholar
Elting JW, de Jager AE, Teelken AW, Schaaf MJ, Maurits NM, van der Naalt J, Sibinga CT, Sulter GA, De Keyser J: Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci 2000, 181: 104-110. 10.1016/S0022-510X(00)00442-1
CAS
PubMed
Google Scholar
Muller K, Townend W, Biasca N, Unden J, Waterloo K, Romner B, Ingebrigtsen T: S100B serum level predicts computed tomography findings after minor head injury. J Trauma 2007, 62: 1452-1456. 10.1097/TA.0b013e318047bfaa
CAS
PubMed
Google Scholar
Zongo D, Ribereau-Gayon R, Masson F, Laborey M, Contrand B, Salmi LR, Montaudon D, Beaudeux JL, Meurin A, Dousset V, Loiseau H, Lagarde E: S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med 2012, 59: 209-218. 10.1016/j.annemergmed.2011.07.027
PubMed
Google Scholar
Rothoerl RD, Woertgen C: High serum S100B levels for trauma patients without head injuries. Neurosurgery 2001, 49: 1490-1491. author reply 1492–1493 10.1097/00006123-200112000-00054
CAS
PubMed
Google Scholar
Marangos PJ, Schmechel DE: Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 1987, 10: 269-295. 10.1146/annurev.ne.10.030187.001413
CAS
PubMed
Google Scholar
Ross SA, Cunningham RT, Johnston CF, Rowlands BJ: Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 1996, 10: 471-476. 10.1080/02688699647104
CAS
PubMed
Google Scholar
Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S: Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 2005, 24: 119-123. 10.1097/01.shk.0000168876.68154.43
CAS
PubMed
Google Scholar
Jackson P, Thompson RJ: The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci 1981, 49: 429-438. 10.1016/0022-510X(81)90032-0
CAS
PubMed
Google Scholar
Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K: Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol 2000, 20: 4691-4698. 10.1128/MCB.20.13.4691-4698.2000
PubMed Central
CAS
PubMed
Google Scholar
Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KK: Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 2012, 72: 335-1344.
Google Scholar
Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H: Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 1999, 45: 138-141.
CAS
PubMed
Google Scholar
Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M, Scalea T: Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma 2008, 65: 778-782. discussion 782–784 10.1097/TA.0b013e318185db2d
CAS
PubMed
Google Scholar
Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A: Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 2004, 57: 1006-1012. 10.1097/01.TA.0000108998.48026.C3
CAS
PubMed
Google Scholar
Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK: Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 2012, 59: 471-483. 10.1016/j.annemergmed.2011.08.021
PubMed
Google Scholar
Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, Sorani MD, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Manley GT, Casey SS, Cheong M, Cooper SR, Dams-O'Connor K, Gordon WA, Hricik AJ, Hochberger K, Menon DK, Mukherjee P, Sinha TK, Schnyer DM, Vassar MJ, Transforming, Research Clinical Knowledge In Traumatic Brain Injury Investigators: GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 2013, 30: 1490-1497. 10.1089/neu.2013.2883
PubMed Central
PubMed
Google Scholar
Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, Fujita M, Izumi T, Maekawa T: Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 2010, 69: 104-109. 10.1097/TA.0b013e3181bbd485
CAS
PubMed
Google Scholar
Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR: Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006, 37: 2508-2513. 10.1161/01.STR.0000242290.01174.9e
CAS
PubMed
Google Scholar
Foerch C, Singer OC, Neumann-Haefelin T, Du Mesnil De Rochemont R, Steinmetz H, Sitzer M: Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 2005, 62: 1130-1134. 10.1001/archneur.62.7.1130
PubMed
Google Scholar
Dassan P, Keir G, Brown MM: Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 2009, 27: 295-302. 10.1159/000199468
CAS
PubMed
Google Scholar
Jonsson H, Johnsson P, Birch-Iensen M, Alling C, Westaby S, Blomquist S: S100B as a predictor of size and outcome of stroke after cardiac surgery. Ann Thorac Surg 2001, 71: 1433-1437. 10.1016/S0003-4975(00)02612-6
CAS
PubMed
Google Scholar
Ahmad O, Wardlaw J, Whiteley WN: Correlation of levels of neuronal and glial markers with radiological measures of infarct volume in ischaemic stroke: a systematic review. Cerebrovasc Dis 2012, 33: 47-54. 10.1159/000332810
CAS
PubMed
Google Scholar
Hill MD, Jackowski G, Bayer N, Lawrence M, Jaeschke R: Biochemical markers in acute ischemic stroke. CMAJ 2000, 162: 1139-1140.
PubMed Central
CAS
PubMed
Google Scholar
Foerch C, Otto B, Singer OC, Neumann-Haefelin T, Yan B, Berkefeld J, Steinmetz H, Sitzer M: Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 2004, 35: 2160-2164. 10.1161/01.STR.0000138730.03264.ac
CAS
PubMed
Google Scholar
Foerch C, Wunderlich MT, Dvorak F, Humpich M, Kahles T, Goertler M, Alvarez-Sabin J, Wallesch CW, Molina CA, Steinmetz H, Sitzer M, Montaner J: Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke 2007, 38: 2491-2495. 10.1161/STROKEAHA.106.480111
CAS
PubMed
Google Scholar
Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL: Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 2012, 79: 1677-1685. 10.1212/WNL.0b013e31826e9a83
CAS
PubMed
Google Scholar
Saenger AK, Christenson RH: Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 2010, 56: 21-33. 10.1373/clinchem.2009.133801
CAS
PubMed
Google Scholar
Yoo JH, Lee SC: Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke. Atherosclerosis 2001, 158: 425-430. 10.1016/S0021-9150(01)00444-0
CAS
PubMed
Google Scholar
Leong T, Zylberstein D, Graham I, Lissner L, Ward D, Fogarty J, Bengtsson C, Bjorkelund C, Thelle D: Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 2008, 28: 961-967. 10.1161/ATVBAHA.107.156596
CAS
PubMed
Google Scholar
Pikula A, Boger RH, Beiser AS, Maas R, DeCarli C, Schwedhelm E, Himali JJ, Schulze F, Au R, Kelly-Hayes M, Kase CS, Vasan RS, Wolf PA, Seshadri S: Association of plasma ADMA levels with MRI markers of vascular brain injury: Framingham offspring study. Stroke 2009, 40: 2959-2964. 10.1161/STROKEAHA.109.557116
PubMed Central
CAS
PubMed
Google Scholar
Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR: Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 1997, 238: 53-56. 10.1016/S0304-3940(97)00859-8
CAS
PubMed
Google Scholar
Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, Santamarina E, Quintana M, Monasterio J, Montaner J: Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004, 35: 1316-1322. 10.1161/01.STR.0000126827.69286.90
CAS
PubMed
Google Scholar
Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, Gonzalez MA, Monasterio J: Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 2001, 32: 1759-1766. 10.1161/01.STR.32.8.1759
CAS
PubMed
Google Scholar
Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, Monasterio J: Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001, 32: 2762-2767. 10.1161/hs1201.99512
CAS
PubMed
Google Scholar
Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribo M, Quintana M, Alvarez-Sabin J: Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003, 107: 598-603. 10.1161/01.CIR.0000046451.38849.90
CAS
PubMed
Google Scholar
Rosell A, Alvarez-Sabin J, Arenillas JF, Rovira A, Delgado P, Fernandez-Cadenas I, Penalba A, Molina CA, Montaner J: A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 2005, 36: 1415-1420. 10.1161/01.STR.0000170641.01047.cc
CAS
PubMed
Google Scholar
Gappoeva MU, Izykenova GA, Granstrem OK, Dambinova SA: Expression of NMDA neuroreceptors in experimental ischemia. Biochemistry (Mosc) 2003, 68: 696-702. 10.1023/A:1024678112357
CAS
Google Scholar
Dambinova SA, Bettermann K, Glynn T, Tews M, Olson D, Weissman JD, Sowell RL: Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS One 2012, 7: e42362. 10.1371/journal.pone.0042362
PubMed Central
CAS
PubMed
Google Scholar
Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA: Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 2003, 49: 1752-1762. 10.1373/49.10.1752
CAS
PubMed
Google Scholar
Bokesch PM, Izykenova GA, Justice JB, Easley KA, Dambinova SA: NMDA receptor antibodies predict adverse neurological outcome after cardiac surgery in high-risk patients. Stroke 2006, 37: 1432-1436. 10.1161/01.STR.0000221295.14547.c8
CAS
PubMed
Google Scholar
Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ: Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000, 31: 2670-2677. 10.1161/01.STR.31.11.2670
CAS
PubMed
Google Scholar
Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, Raabe A, Neumann-Haefelin T, Steinmetz H, Sitzer M: Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 2006, 77: 181-184. 10.1136/jnnp.2005.074823
PubMed Central
CAS
PubMed
Google Scholar
Dvorak F, Haberer I, Sitzer M, Foerch C: Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 2009, 27: 37-41. 10.1159/000172632
CAS
PubMed
Google Scholar
Unden J, Strandberg K, Malm J, Campbell E, Rosengren L, Stenflo J, Norrving B, Romner B, Lindgren A, Andsberg G: Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol 2009, 256: 72-77. 10.1007/s00415-009-0054-8
CAS
PubMed
Google Scholar
Ernst A, Suhr J, Kohrle J, Bergmann A: Detection of stable N-terminal protachykinin A immunoreactivity in human plasma and cerebrospinal fluid. Peptides 2008, 29: 1201-1206. 10.1016/j.peptides.2008.02.006
CAS
PubMed
Google Scholar
Doehner W, von Haehling S, Suhr J, Ebner N, Schuster A, Nagel E, Melms A, Wurster T, Stellos K, Gawaz M, Bigalke B: Elevated plasma levels of neuropeptide proenkephalin a predict mortality and functional outcome in ischemic stroke. J Am Coll Cardiol 2012, 60: 346-354. 10.1016/j.jacc.2012.04.024
CAS
PubMed
Google Scholar
Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK, Laskowitz DT, Valkirs GE, Buechler KF: Early biomarkers of stroke. Clin Chem 2003, 49: 1733-1739. 10.1373/49.10.1733
CAS
PubMed
Google Scholar
Laskowitz DT, Blessing R, Floyd J, White WD, Lynch JR: Panel of biomarkers predicts stroke. Ann N Y Acad Sci 2005, 1053: 30. 10.1196/annals.1344.051
CAS
PubMed
Google Scholar
Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC: Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 2009, 40: 77-85. 10.1161/STROKEAHA.108.516377
PubMed
Google Scholar
Montaner J, Mendioroz M, Ribo M, Delgado P, Quintana M, Penalba A, Chacon P, Molina C, Fernandez-Cadenas I, Rosell A, Alvarez-Sabin J: A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J Intern Med 2011, 270: 166-174. 10.1111/j.1365-2796.2010.02329.x
CAS
PubMed
Google Scholar
Doehner W: Diagnostic biomarkers in cardiovascular disease: the proteomics approach. Eur Heart J 2012, 33: 2249-2251. 10.1093/eurheartj/ehs187
CAS
PubMed
Google Scholar