Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.
Article
PubMed
PubMed Central
Google Scholar
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Crit Care Med. 2013;41:580–637.
Article
PubMed
Google Scholar
Morris CG, Low J. Metabolic acidosis in the critically ill: part 1. Classification and pathophysiology. Anaesthesia. 2008;63:294–301.
Article
CAS
PubMed
Google Scholar
Kraut JA, Kurtz I. Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol. 2006;10:111–7.
Article
PubMed
Google Scholar
Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Liborio AB, et al. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37:2733–9.
Article
CAS
PubMed
Google Scholar
Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27:74–83.
Article
CAS
PubMed
Google Scholar
Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care. 2013;3:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friesecke S, Abel P, Roser M, Felix SB, Runge S. Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care. 2010;14:R226.
Article
PubMed
PubMed Central
Google Scholar
Berger DS, Fellner SK, Robinson KA, Vlasica K, Godoy IE, Shroff SG. Disparate effects of three types of extracellular acidosis on left ventricular function. Am J Physiol. 1999;276:H582–94.
CAS
PubMed
Google Scholar
Otter D, Austin C. Simultaneous monitoring of vascular contractility, intracellular pH and intracellular calcium in isolated rat mesenteric arteries; effects of weak bases. Exp Physiol. 2000;85:349–51.
Article
CAS
PubMed
Google Scholar
Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, et al. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36:2019–29.
Article
CAS
PubMed
Google Scholar
Jung B, Rimmele T, Le Goff C, Chanques G, Corne P, Jonquet O, et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care. 2011;15:R238.
Article
PubMed
PubMed Central
Google Scholar
Kajbaf F, Lalau JD. Mortality rate in so-called “metformin-associated lactic acidosis”: a review of the data since the 1960s. Pharmacoepidemiol Drug Saf. 2014;23:1123–7.
Article
CAS
PubMed
Google Scholar
Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33:113–22.
Article
PubMed
Google Scholar
Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol. 1988;254:E555–61.
CAS
PubMed
Google Scholar
Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.
Article
CAS
PubMed
Google Scholar
Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12:315–21.
Article
PubMed
Google Scholar
Wutrich Y, Barraud D, Conrad M, Cravoisy-Popovic A, Nace L, Bollaert PE, et al. Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock. 2010;34:4–9.
Article
CAS
PubMed
Google Scholar
Juneja D, Singh O, Dang R. Admission hyperlactatemia: causes, incidence, and impact on outcome of patients admitted in a general medical intensive care unit. J Crit Care. 2011;26:316–20.
Article
CAS
PubMed
Google Scholar
Tsai MH, Chen YC, Lien JM, Tian YC, Peng YS, Fang JT, et al. Hemodynamics and metabolic studies on septic shock in patients with acute liver failure. J Crit Care. 2008;23:468–72.
Article
CAS
PubMed
Google Scholar
Garcia-Alvarez M, Marik P, Bellomo R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. 2014;2:339–47.
Article
PubMed
Google Scholar
Morris CG, Low J. Metabolic acidosis in the critically ill: part 2. Causes and treatment. Anaesthesia. 2008;63:396–411.
Article
CAS
PubMed
Google Scholar
Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998;333:167–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langer T, Carlesso E, Protti A, Monti M, Comini B, Zani L, et al. In vivo conditioning of acid–base equilibrium by crystalloid solutions: an experimental study on pigs. Intensive Care Med. 2012;38:686–93.
Article
CAS
PubMed
Google Scholar
Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371:2309–19.
Article
PubMed
CAS
Google Scholar
Teplinsky K, O’Toole M, Olman M, Walley KR, Wood LD. Effect of lactic acidosis on canine hemodynamics and left ventricular function. Am J Physiol. 1990;258:H1193–9.
CAS
PubMed
Google Scholar
Regueira T, Djafarzadeh S, Brandt S, Gorrasi J, Borotto E, Porta F, et al. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesthesiol Scand. 2012;56:846–59.
Article
CAS
PubMed
Google Scholar
Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH. Acidosis in models of cardiac ventricular myocytes. Philos Transact A Math Phys Eng Sci. 2006;364:1171–86.
Article
CAS
Google Scholar
Choi HS, Trafford AW, Orchard CH, Eisner DA. The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J Physiol. 2000;529:661–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong LW, Wu LL, Ji Y, Liu MS. Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock. 2001;16:33–9.
Article
CAS
PubMed
Google Scholar
Harrison SM, Frampton JE, McCall E, Boyett MR, Orchard CH. Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes. Am J Physiol. 1992;262:C348–57.
CAS
PubMed
Google Scholar
Sikes PJ, Zhao P, Maass DL, White J, Horton JW. Sodium/hydrogen exchange activity in sepsis and in sepsis complicated by previous injury: 31P and 23Na NMR study. Crit Care Med. 2005;33:605–15.
Article
PubMed
Google Scholar
DeSantiago J, Maier LS, Bers DM. Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. J Mol Cell Cardiol. 2004;36:67–74.
Article
CAS
PubMed
Google Scholar
Wu LL, Tang C, Dong LW, Liu MS. Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock. 2002;17:389–93.
Article
PubMed
Google Scholar
Wu D, Kraut JA. Potential role of NHE1 (sodium-hydrogen exchanger 1) in the cellular dysfunction of lactic acidosis: implications for treatment. Am J Kidney Dis. 2011;57:781–7.
Article
CAS
PubMed
Google Scholar
Kapur S, Wasserstrom JA, Kelly JE, Kadish AH, Aistrup GL. Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart. Am J Physiol Heart Circ Physiol. 2009;296:H1491–512.
Article
CAS
PubMed
Google Scholar
Blanchard EM, Solaro RJ. Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circ Res. 1984;55:382–91.
Article
CAS
PubMed
Google Scholar
Ming MJ, Hu D, Chen HS, Liu LM, Nan X, Hua CH, et al. Effect of MCI-154, a calcium sensitizer, on calcium sensitivity of myocardial fibers in endotoxic shock rats. Shock. 2000;14:652–6.
Article
CAS
PubMed
Google Scholar
Schotola H, Toischer K, Popov AF, Renner A, Schmitto JD, Gummert J, et al. Mild metabolic acidosis impairs the beta-adrenergic response in isolated human failing myocardium. Crit Care. 2012;16:R153.
Article
PubMed
PubMed Central
Google Scholar
Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ, et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol. 2004;207:3189–200.
Article
CAS
PubMed
Google Scholar
Jian B, Wang D, Chen D, Voss J, Chaudry I, Raju R. Hypoxia-induced alteration of mitochondrial genes in cardiomyocytes: role of Bnip3 and Pdk1. Shock. 2010;34:169–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A. 2002;99:12825–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Kasseckert S, Kostin S, Abdallah Y, Schafer C, Kaminski A, et al. Ischemic acidosis causes apoptosis in coronary endothelial cells through activation of caspase-12. Cardiovasc Res. 2007;73:172–80.
Article
CAS
PubMed
Google Scholar
Marsh JD, Margolis TI, Kim D. Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol. 1988;254:H20–7.
CAS
PubMed
Google Scholar
Ives SJ, Andtbacka RH, Noyes RD, Morgan RG, Gifford JR, Park SY, et al. alpha1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH. Exp Physiol. 2013;98:256–67.
Article
CAS
PubMed
Google Scholar
Ishizaka H, Kuo L. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ Res. 1996;78:50–7.
Article
CAS
PubMed
Google Scholar
Kuo JH, Chen SJ, Shih CC, Lue WM, Wu CC. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock. Shock. 2009;32:74–9.
Article
CAS
PubMed
Google Scholar
Pedoto A, Caruso JE, Nandi J, Oler A, Hoffmann SP, Tassiopoulos AK, et al. Acidosis stimulates nitric oxide production and lung damage in rats. Am J Respir Crit Care Med. 1999;159:397–402.
Article
CAS
PubMed
Google Scholar
Pedoto A, Nandi J, Oler A, Camporesi EM, Hakim TS, Levine RA. Role of nitric oxide in acidosis-induced intestinal injury in anesthetized rats. J Lab Clin Med. 2001;138:270–6.
Article
CAS
PubMed
Google Scholar
Fernandes D, Assreuy J. Nitric oxide and vascular reactivity in sepsis. Shock. 2008;30:10–3.
Article
CAS
PubMed
Google Scholar
Yaghi A, Paterson NA, McCormack DG. Vascular reactivity in sepsis: importance of controls and role of nitric oxide. Am J Respir Crit Care Med. 1995;151:706–12.
Article
CAS
PubMed
Google Scholar
Kahn AM, Cragoe Jr EJ, Allen JC, Halligan RD, Shelat H. Na(+)-H+ and Na(+)-dependent Cl(−)-HCO3- exchange control pHi in vascular smooth muscle. Am J Physiol. 1990;259:C134–43.
CAS
PubMed
Google Scholar
Little PJ, Neylon CB, Farrelly CA, Weissberg PL, Cragoe Jr EJ, Bobik A. Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3- mechanisms. Cardiovasc Res. 1995;29:239–46.
CAS
PubMed
Google Scholar
Aalkjaer C, Peng HL. pH and smooth muscle. Acta Physiol Scand. 1997;161:557–66.
Article
CAS
PubMed
Google Scholar
Boedtkjer E, Praetorius J, Aalkjaer C. NBCn1 (slc4a7) mediates the Na + −dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res. 2006;98:515–23.
Article
CAS
PubMed
Google Scholar
Weil MH, Houle DB, Brown Jr EB, Campbell GS, Heath C. Vasopressor agents; influence of acidosis on cardiac and vascular responsiveness. Calif Med. 1958;88:437–40.
CAS
PubMed
PubMed Central
Google Scholar
Bers DM, Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflugers Arch. 1982;393:171–8.
Article
CAS
PubMed
Google Scholar
Allen DG, Orchard CH. The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1983;335:555–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orchard CH, Kentish JC. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol. 1990;258:C967–81.
CAS
PubMed
Google Scholar
Kimmoun A, Ducrocq N, Sennoun N, Issa K, Strub C, Escanye JM, et al. Efficient extra- and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock. Anesthesiology. 2014;120:926–34.
Article
PubMed
Google Scholar
Hagiya K, Takahashi H, Isaka Y, Inomata S, Tanaka M. Influence of acidosis on cardiotonic effects of colforsin and epinephrine: a dose–response study. J Cardiothorac Vasc Anesthesia. 2013;27:925–32.
Article
CAS
Google Scholar
McCaul CL, McNamara P, Engelberts D, Slorach C, Hornberger LK, Kavanagh BP. The effect of global hypoxia on myocardial function after successful cardiopulmonary resuscitation in a laboratory model. Resuscitation. 2006;68:267–75.
Article
PubMed
Google Scholar
Toller W, Wolkart G, Stranz C, Metzler H, Brunner F. Contractile action of levosimendan and epinephrine during acidosis. Eur J Pharmacol. 2005;507:199–209.
Article
CAS
PubMed
Google Scholar
Chan PS, Kereiakes DJ, Bartone C, Chow T. Usefulness of microvolt T-wave alternans to predict outcomes in patients with ischemic cardiomyopathy beyond one year. Am J Cardiol. 2008;102:280–4.
Article
PubMed
Google Scholar
Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994;330:235–41.
Article
CAS
PubMed
Google Scholar
Austin C, Wray S. Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J Physiol. 1993;466:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Austin C, Wray S. Changes of intracellular pH in rat mesenteric vascular smooth muscle with high-K+ depolarization. J Physiol. 1993;469:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner JP, Diecke FP. Influence of pH on isometric force development and relaxation in skinned vascular smooth muscle. Pflugers Arch. 1988;412:231–9.
Article
CAS
PubMed
Google Scholar
Mitchell JH, Wildenthal K, Johnson Jr RL. The effects of acid–base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972;1:375–89.
Article
CAS
PubMed
Google Scholar
Fujita M, Asanuma H, Hirata A, Wakeno M, Takahama H, Sasaki H, et al. Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol. 2007;292:H2004–8.
Article
CAS
PubMed
Google Scholar
Steenbergen C, Deleeuw G, Rich T, Williamson JR. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res. 1977;41:849–58.
Article
CAS
PubMed
Google Scholar
Gabig TG, Bearman SI, Babior BM. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood. 1979;53:1133–9.
CAS
PubMed
Google Scholar
Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67:124–33.
Article
CAS
PubMed
Google Scholar
Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.
Article
PubMed
Google Scholar
Refsum HE, Opdahl H, Leraand S. Effect of extreme metabolic acidosis on oxygen delivery capacity of the blood - an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30. Crit Care Med. 1997;25:1497–501.
Article
CAS
PubMed
Google Scholar
Siegel G, Emden J, Wenzel K, Mironneau J, Stock G. Potassium channel activation in vascular smooth muscle. Adv Exp Med Biol. 1992;311:53–72.
Article
CAS
PubMed
Google Scholar
Jennings RB, Reimer KA, Steenbergen Jr C, Schaper J. Total ischemia III: effect of inhibition of anaerobic glycolysis. J Mol Cell Cardiol. 1989;21:37–54.
Article
CAS
PubMed
Google Scholar
Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support. 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S729–67.
Article
PubMed
Google Scholar
Bollaert PE, Robin-Lherbier B, Mallie JP, Nace L, Escanye JM, Larcan A. Effects of sodium bicarbonate on striated muscle metabolism and intracellular pH during endotoxic shock. Shock. 1994;1:196–200.
Article
CAS
PubMed
Google Scholar
Stacpoole PW. Lactic acidosis: the case against bicarbonate therapy. Ann Intern Med. 1986;105:276–9.
Article
CAS
PubMed
Google Scholar
Wilson RF, Spencer AR, Tyburski JG, Dolman H, Zimmerman LH. Bicarbonate therapy in severely acidotic trauma patients increases mortality. J Trauma Acute Care Surg. 2013;74:45–50. discussion 50.
Article
CAS
PubMed
Google Scholar
Arieff AI, Leach W, Park R, Lazarowitz VC. Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol. 1982;242:F586–91.
CAS
PubMed
Google Scholar
Rhee KH, Toro LO, McDonald GG, Nunnally RL, Levin DL. Carbicarb, sodium bicarbonate, and sodium chloride in hypoxic lactic acidosis. Effect on arterial blood gases, lactate concentrations, hemodynamic variables, and myocardial intracellular pH. Chest. 1993;104:913–8.
Article
CAS
PubMed
Google Scholar
Valenza F, Pizzocri M, Salice V, Chevallard G, Fossali T, Coppola S, et al. Sodium bicarbonate treatment during transient or sustained lactic acidemia in normoxic and normotensive rats. PLoS One. 2012;7:e46035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyd JH, Walley KR. Is there a role for sodium bicarbonate in treating lactic acidosis from shock? Curr Opin Crit Care. 2008;14:379–83.
Article
PubMed
Google Scholar
Lang RM, Fellner SK, Neumann A, Bushinsky DA, Borow KM. Left ventricular contractility varies directly with blood ionized calcium. Ann Intern Med. 1988;108:524–9.
Article
CAS
PubMed
Google Scholar
Beech JS, Nolan KM, Iles RA, Cohen RD, Williams SC, Evans SJ. The effects of sodium bicarbonate and a mixture of sodium bicarbonate and carbonate (“Carbicarb”) on skeletal muscle pH and hemodynamic status in rats with hypovolemic shock. Metabolism. 1994;43:518–22.
Article
CAS
PubMed
Google Scholar
Cooper DJ, Herbertson MJ, Werner HA, Walley KR. Bicarbonate does not increase left ventricular contractility during L-lactic acidemia in pigs. Am Rev Respir Dis. 1993;148:317–22.
Article
CAS
PubMed
Google Scholar
Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med. 1990;112:492–8.
Article
CAS
PubMed
Google Scholar
Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227:754–6.
Article
CAS
PubMed
Google Scholar
Iberti TJ, Kelly KM, Gentili DR, Rosen M, Katz DP, Premus G, et al. Effects of sodium bicarbonate in canine hemorrhagic shock. Crit Care Med. 1988;16:779–82.
Article
CAS
PubMed
Google Scholar
Mathieu D, Neviere R, Billard V, Fleyfel M, Wattel F. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med. 1991;19:1352–6.
Article
CAS
PubMed
Google Scholar
Giunti C, Priouzeau F, Allemand D, Levraut J. Effect of tris-hydroxymethyl aminomethane on intracellular pH depends on the extracellular non-bicarbonate buffering capacity. Transl Res. 2007;150:350–6.
Article
CAS
PubMed
Google Scholar
Moon PF, Gabor L, Gleed RD, Erb HN. Acid–base, metabolic, and hemodynamic effects of sodium bicarbonate or tromethamine administration in anesthetized dogs with experimentally induced metabolic acidosis. Am J Vet Res. 1997;58:771–6.
CAS
PubMed
Google Scholar
Sirieix D, Delayance S, Paris M, Massonnet-Castel S, Carpentier A, Baron JF. Tris-hydroxymethyl aminomethane and sodium bicarbonate to buffer metabolic acidosis in an isolated heart model. Am J Respir Crit Care Med. 1997;155:957–63.
Article
CAS
PubMed
Google Scholar
Hoste EA, Colpaert K, Vanholder RC, Lameire NH, De Waele JJ, Blot SI, et al. Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis. J Nephrol. 2005;18:303–7.
CAS
PubMed
Google Scholar
Adrogue HJ, Madias NE. Management of life-threatening acid–base disorders. First of two parts. N Engl J Med. 1998;338:26–34.
Article
CAS
PubMed
Google Scholar
Sonett J, Baker LS, Hsi C, Knox MA, Visner MS, Landow L. Sodium bicarbonate versus Carbicarb in canine myocardial hypercarbic acidosis. J Crit Care. 1993;8:1–11.
Article
CAS
PubMed
Google Scholar
Bersin RM, Arieff AI. Improved hemodynamic function during hypoxia with Carbicarb, a new agent for the management of acidosis. Circulation. 1988;77:227–33.
Article
CAS
PubMed
Google Scholar
Leung JM, Landow L, Franks M, Soja-Strzepa D, Heard SO, Arieff AI, et al. Safety and efficacy of intravenous Carbicarb in patients undergoing surgery: comparison with sodium bicarbonate in the treatment of mild metabolic acidosis. SPI Research Group. Study of Perioperative Ischemia. Crit Care Med. 1994;22:1540–9.
Article
CAS
PubMed
Google Scholar
Uchino S, Bellomo R, Ronco C. Intermittent versus continuous renal replacement therapy in the ICU: impact on electrolyte and acid–base balance. Intensive Care Med. 2001;27:1037–43.
Article
CAS
PubMed
Google Scholar
Tan HK, Uchino S, Bellomo R. The acid–base effects of continuous hemofiltration with lactate or bicarbonate buffered replacement fluids. Int J Artificial Organs. 2003;26:477–83.
CAS
Google Scholar
Naka T, Bellomo R. Bench-to-bedside review: treating acid–base abnormalities in the intensive care unit - the role of renal replacement therapy. Crit Care. 2004;8:108–14.
Article
PubMed
PubMed Central
Google Scholar
Investigators RRTS, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.
Article
Google Scholar
Bellomo R, Lipcsey M, Calzavacca P, Haase M, Haase-Fielitz A, Licari E, et al. Early acid–base and blood pressure effects of continuous renal replacement therapy intensity in patients with metabolic acidosis. Intensive Care Med. 2013;39:429–36.
Article
PubMed
Google Scholar
Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P. High-volume haemofiltration in human septic shock. Intensive Care Med. 2001;27:978–86.
Article
CAS
PubMed
Google Scholar
Klouche K, Cavadore P, Portales P, Clot J, Canaud B, Beraud JJ. Continuous veno-venous hemofiltration improves hemodynamics in septic shock with acute renal failure without modifying TNFalpha and IL6 plasma concentrations. J Nephrol. 2002;15:150–7.
PubMed
Google Scholar
Ratanarat R, Brendolan A, Piccinni P, Dan M, Salvatori G, Ricci Z, et al. Pulse high-volume haemofiltration for treatment of severe sepsis: effects on hemodynamics and survival. Crit Care. 2005;9:R294–302.
Article
PubMed
PubMed Central
Google Scholar
Tani M, Neely JR. Na + accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol. 1990;22:57–72.
Article
CAS
PubMed
Google Scholar
Wu D, Kraut JA, Abraham WM. Sabiporide improves cardiovascular function, decreases the inflammatory response and reduces mortality in acute metabolic acidosis in pigs. PLoS One. 2013;8:e53932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Lee D, Wu D. Sabiporide improves cardiovascular function and attenuates organ injury from severe sepsis. J Surg Res. 2014;188:231–7.
Article
CAS
PubMed
Google Scholar
Kim HJ, Son YK, An WS. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PLoS One. 2013;8:e65283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levraut J, Garcia P, Giunti C, Ichai C, Bouregba M, Ciebiera JP, et al. The increase in CO2 production induced by NaHCO3 depends on blood albumin and hemoglobin concentrations. Intensive Care Med. 2000;26:558–64.
Article
CAS
PubMed
Google Scholar
Nielsen HB, Bredmose PP, Stromstad M, Volianitis S, Quistorff B, Secher NH. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol (1985). 2002;93:724–31.
Article
Google Scholar
Nakashima K, Yamashita T, Kashiwagi S, Nakayama N, Kitahara T, Ito H. The effect of sodium bicarbonate on CBF and intracellular pH in man: stable Xe-CT and 31P-MRS. Acta Neurol Scand Suppl. 1996;166:96–8.
Article
CAS
PubMed
Google Scholar
Mark NH, Leung JM, Arieff AI, Mangano DT. Safety of low-dose intraoperative bicarbonate therapy: a prospective, double-blind, randomized study. The Study of Perioperative Ischemia (SPI) Research Group. Crit Care Med. 1993;21:659–65.
Article
CAS
PubMed
Google Scholar
Fanconi S, Burger R, Ghelfi D, Uehlinger J, Arbenz U. Hemodynamic effects of sodium bicarbonate in critically ill neonates. Intensive Care Med. 1993;19:65–9.
Article
CAS
PubMed
Google Scholar
Bersin RM, Chatterjee K, Arieff AI. Metabolic and hemodynamic consequences of sodium bicarbonate administration in patients with heart disease. Am J Med. 1989;87:7–14.
Article
CAS
PubMed
Google Scholar
Shapiro JI, Whalen M, Chan L. Hemodynamic and hepatic pH responses to sodium bicarbonate and Carbicarb during systemic acidosis. Magn Reson Med. 1990;16:403–10.
Article
CAS
PubMed
Google Scholar
Dimlich RV, Biros MH, Widman DW, Kaplan J. Comparison of sodium bicarbonate with dichloroacetate treatment of hyperlactatemia and lactic acidosis in the ischemic rat. Resuscitation. 1988;16:13–30.
Article
CAS
PubMed
Google Scholar
Hope PL, Cady EB, Delpy DT, Ives NK, Gardiner RM, Reynolds EO. Brain metabolism and intracellular pH during ischaemia: effects of systemic glucose and bicarbonate administration studied by 31P and 1H nuclear magnetic resonance spectroscopy in vivo in the lamb. J Neurochem. 1988;50:1394–402.
Article
CAS
PubMed
Google Scholar
Sessler D, Mills P, Gregory G, Litt L, James T. Effects of bicarbonate on arterial and brain intracellular pH in neonatal rabbits recovering from hypoxic lactic acidosis. J Pediatr. 1987;111:817–23.
Article
CAS
PubMed
Google Scholar
Graf H, Leach W, Arieff AI. Metabolic effects of sodium bicarbonate in hypoxic lactic acidosis in dogs. Am J Physiol. 1985;249:F630–5.
CAS
PubMed
Google Scholar