Skip to main content
  • Matters Arising
  • Open access
  • Published:

Comparison of mechanical versus manual cardiopulmonary resuscitation in cardiac arrest

The Original Article was published on 30 July 2024

To the editor

We read with great interest the article by El-Menyar et al., titled “Mechanical versus manual cardiopulmonary resuscitation (CPR): an umbrella review of contemporary systematic reviews and more”, recently published in Critical Care [1]. The findings from the umbrella review and the new systematic review in this study suggest that mechanical CPR is not superior to manual CPR in achieving return of spontaneous circulation (ROSC).

Although this article offers valuable insights, several issues warrant further discussion and clarification. In Fig. 2’s Forest plot for ROSC from El-Menyar et al.’s article, we observed some issues with the study selection. The umbrella meta-analysis included duplicated studies [23] and studies with no ROSC-related data upon our detailed review [45]. Additionally, the inclusion of just the abstracts from three studies [678] could potentially limit the robustness of the findings. Moreover, when replicating the authors’ search strategy, we identified a missing randomized controlled trial (RCT) comparing mechanical and manual CPR in in-hospital cardiac arrest (IHCA) settings [9].

We consolidated studies from the umbrella review and the new systematic review, excluding improperly included studies and adding the newly identified RCT. Using Stata Version 16.0 (StataCorp, College Station, TX), we conducted subgroup analyses for out-of-hospital cardiac arrest (OHCA) and IHCA patients across RCTs and non-RCTs. For OHCA patients, mechanical CPR did not improve ROSC rates in either study type. However, the IHCA outcomes varied by study type: RCTs showed a higher probability of ROSC with mechanical CPR, whereas non-RCTs indicated a reduced likelihood of achieving ROSC (Figs. 1 and 2)

Fig. 1
figure 1

Forest plot of ROSC in mechanical CPR versus manual CPR in RCTs. ROSC, return of spontaneous circulation; CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; IHCA, in-hospital cardiac arrest; RCT, randomized controlled trial; CI, confidence interval

Fig. 2
figure 2

Forest plot of ROSC in mechanical CPR versus manual CPR in non-RCTs. ROSC, return of spontaneous circulation; CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; IHCA, in-hospital cardiac arrest; RCT, randomized controlled trial; CI, confidence interval

.

While our analysis supports the finding that mechanical CPR does not improve ROSC rates in OHCA settings, as highlighted in the meta-analysis by El-Menyar et al., the variable results for IHCA indicate a need for further investigation. In particular, the discrepancies between RCTs and non-RCTs in IHCA settings imply underlying differences that could influence CPR outcomes. These differences may include variations in patient characteristics, response times, and hospital settings. Additionally, limitations in study design, such as selection biases commonly seen in observational studies, could also be contributing factors. Further large-scale RCTs are required to determine the effectiveness of mechanical versus manual CPR in improving patient outcomes during cardiac arrest.

Data availability

No datasets were generated or analysed during the current study.

References

  1. El-Menyar A, Naduvilekandy M, Rizoli S, Di Somma S, Cander B, Galwankar S, Lateef F, Abdul Rahman MA, Nanayakkara P, Al-Thani H. Mechanical versus manual cardiopulmonary resuscitation (CPR): an umbrella review of contemporary systematic reviews and more. Crit Care. 2024;28(1):259.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hock Ong ME, Fook-Chong S, Annathurai A, Ang SH, Tiah L, Yong KL, Koh ZX, Yap S, Sultana P. Improved neurologically intact survival with the use of an automated, load-distributing band chest compression device for cardiac arrest presenting to the emergency department. Crit Care. 2012;16(4):R144.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. 2005;9(1):61–7.

    Article  PubMed  Google Scholar 

  4. Axelsson C, Herrera MJ, Fredriksson M, Lindqvist J, Herlitz J. Implementation of mechanical chest compression in out-of-hospital cardiac arrest in an emergency medical service system. Am J Emerg Med. 2013;31(8):1196–200.

    Article  PubMed  Google Scholar 

  5. Jennings PA, Harriss L, Bernard S, Bray J, Walker T, Spelman T, Smith K, Cameron P. An automated CPR device compared with standard chest compressions for out-of-hospital resuscitation. BMC Emerg Med. 2012;12:8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lairet JR, Lee M. A comparison of standard manual cardiopulmonary resuscitation versus the autopulse mechanical cardiopulmonary resuscitation device. Ann Emerg Med. 2005;46(3).

  7. Paradis NAKD, Ghilarducci D, Palazzolo J. California AutoPulse Registry Steering Committee. The California AutoPulse Quality Assurance Registry. Circulation. 2009;120:S1457.

    Google Scholar 

  8. Morozov SNAS, Fedorov AY. Improved prognosis after implementation of chest compression device in out-of-hospital cardiac arrest. Eur Heart J. 2012;3:S702.

    Google Scholar 

  9. Couper K, Quinn T, Booth K, Lall R, Devrell A, Orriss B, Regan S, Yeung J, Perkins GD. Mechanical versus manual chest compressions in the treatment of in-hospital cardiac arrest patients in a non-shockable rhythm: a multi-centre feasibility randomised controlled trial (COMPRESS-RCT). Resuscitation. 2021;158:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YZ and QW were responsible for literature research, data extraction, and figure production. DC was responsible for supervision. All the authors participated in the draft writing, review, and editing.

Corresponding authors

Correspondence to Da Chen or Qian Wang.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, D. & Wang, Q. Comparison of mechanical versus manual cardiopulmonary resuscitation in cardiac arrest. Crit Care 28, 319 (2024). https://doi.org/10.1186/s13054-024-05088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-024-05088-7