Skip to main content
  • Matters Arising
  • Open access
  • Published:

In response to: multimodal neuromonitoring in traumatic brain injury patients: the search for the holy grail

The Original Article was published on 16 October 2023

The Original Article was published on 31 August 2023

We thank Taccone et al. for their important comments regarding our original article [1]. In this part I study, we explored the relation between global cerebral physiological variables (intracranial pressure [ICP], cerebral perfusion pressure [CPP], pressure reactivity index [PRx], and optimal CPP [CPPopt]) and brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI).

We found that although the global cerebral physiological variables and pbtO2 were significantly related, these associations were weak in magnitude and were most pronounced in cases of extreme disturbances in global cerebral physiology. Notably, these findings were also evident in linear mixed effect models, in which we included patients as a random effect. This approach allowed us to account for patient heterogeneity in terms of differences in the proximity between focal lesions and the pbtO2 probe and slight changes in neurocritical care management over the long study period. The latter included approaches informed by both pbtO2 and PRx/CPPopt in the later years. Unfortunately, access to specific data on pbtO2 probe location and more granular details of pbtO2-directed management were not available for analysis. Thus, while we fully agree with Taccone et al. that such data would have refined our analyses, we feel that our statistical approach has lessened these effects somewhat by focusing on the within-patient relationships.

Furthermore, although ICP, CPP, PRx, and CPPopt are typically considered the main surrogates of global cerebral perfusion in the neurocritical care setting, other variables such as systemic oxygenation and cerebral energy metabolism are important modulators of brain tissue oxygenation. As indicated by Taccone et al., further studies are warranted that also include pulse oximetry, arterial blood gases, and microdialysis data to in greater detail investigate the complex pathophysiological interplay among systemic and cerebral physiological variables.

In addition, Taccone et al. raises an intriguing question if optimal cerebral haemodynamic targets should be oriented towards preservation of cerebral autoregulation or focus on down-stream variables such as achieving adequate brain tissue oxygenation. Autoregulatory-oriented therapy aims at targeting the CPP for which the brain is best protected from blood flow variations and in practical terms this implies avoidance of both ischaemia and hyperaemia. However, in special circumstances, it is possible that ischaemia and hypoxia still can take place although the CPP lies within the autoregulatory range, such as in case of severe hyperventilation or in failure of the diffusive oxygen transport in brain tissue. Thus, the advantage of pbtO2 or microdialysis of energy metabolism is that these tools monitor downstream physiology to CPP/CPPopt and thereby could better indicate when cerebral decompensation occurs. Still, the issue with pbtO2 and microdialysis is their spatial constraints and limited validity to reflect the physiology of the entire brain [2]. As outlined in the part II study [3], in which we explored the prognostic role of low pbtO2, hypoxic pbtO2 was primarily associated with outcome when it occurred in association with disturbances in other global cerebral physiological variables, but rarely in the setting of low pbtO2 alone. Thus, pbtO2 monitoring appears to be an important diagnostic adjunct to ICP, PRx, CPP, and CPPopt as an indicator of detrimental ischaemic hypoxia, while the clinical significance of isolated pbtO2 insults is less clear. Finally, low pbto2 was associated with unfavourable outcome in a multiple logistic regression in the part II study [3]. However, this association was attenuated to non-significant levels when ΔCPPopt < −5 mmHg (which turned out significant) was included in the model. Consequently, we speculate if the global autoregulatory target CPPopt may be a stronger indicator of clinically significant global cerebral blood flow disturbances than hypoxic pbtO2-values, due to the focal limitations of the latter monitoring tool.

Altogether, our main purpose of our part I study [1] was to determine whether pbtO2 is a suitable surrogate measure of cerebral haemodynamic optimization for future clinical trials on autoregulatory therapy [4]. However, most likely due to the complexity in the interaction of cerebral physiological variables and differences in monitoring techniques (global vs. focal), pbtO2 did not appear to be a good surrogate measure for these purposes. Still, we do indeed think that comprehensive monitoring, including pbtO2, and the integration of the information derived from each monitoring modality remains of outmost importance in order to describe the pathophysiology in TBI patients. However, as always in this field, we anticipate that it will be challenging to prove whether it actually benefits functional outcomes [5].

Availability of data and materials

Not applicable.


  1. Svedung Wettervik T, Beqiri E, Bögli SY, Placek M, Guilfoyle MR, Helmy A, Lavinio A, O’Leary R, Hutchinson PJ, Smielewski P. Brain tissue oxygen monitoring in traumatic brain injury: part I-To what extent does PbtO(2) reflect global cerebral physiology? Crit Care. 2023;27(1):339.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Svedung Wettervik T, Engquist H, Hånell A, Howells T, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Cerebral microdialysis monitoring of energy metabolism: relation to cerebral blood flow and oxygen delivery in aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2023;35(4):384–93.

    Article  PubMed  Google Scholar 

  3. Svedung Wettervik T, Beqiri E, Hånell A, Bögli SY, Placek M, Guilfoyle MR, Helmy A, Lavinio A, O’Leary R, Hutchinson PJ, et al. Brain tissue oxygen monitoring in traumatic brain injury-part II: isolated and combined insults in relation to outcome. Crit Care. 2023;27(1):370.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Park S, Beqiri E, Smielewski P, Aries M. Inaugural State of the Union: continuous cerebral autoregulation monitoring in the clinical practice of neurocritical care and anesthesia. Neurocrit Care 2023.

  5. Payen JF, Launey Y, Chabanne R, Gay S, Francony G, Gergele L, Vega E, Montcriol A, Couret D, Cottenceau V, et al. Intracranial pressure monitoring with and without brain tissue oxygen pressure monitoring for severe traumatic brain injury in France (OXY-TC): an open-label, randomised controlled superiority trial. Lancet Neurol. 2023;22(11):1005–14.

    Article  PubMed  Google Scholar 

Download references


Not applicable.

Author information

Authors and Affiliations



TSW wrote the main manuscript text; EB and PS reviewed the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Teodor Svedung Wettervik.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svedung Wettervik, T., Beqiri, E. & Smielewski, P. In response to: multimodal neuromonitoring in traumatic brain injury patients: the search for the holy grail. Crit Care 27, 452 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: