Skip to main content
  • Matters Arising
  • Open access
  • Published:

A reply to analysis of static parameters in retrospective studies: limitations and interpretation

The Original Article was published on 23 October 2023

The Original Article was published on 05 January 2023

We thank Dr. Shen for their interest in our study [1, 2]. Dr. Shen raises important points on the effect of critical care interventions on blood pressure, the impact of blood pressure exposure over time on outcomes, and the clinical implications of our study [2].

The physiological data contained within the Case Mix Programme in our study are collected by trained data collectors according to strict rules set out in a Data Collection Manual [1]. These rules state blood pressure values “… should not be recorded for any admission during periods of iatrogenic disturbance, e.g. physiotherapy, turning, periods of crying, etc.” Therefore, the critical care interventions described by Dr. Shen will not have contributed to highest and lowest blood pressure recordings in our study [1, 2].

Dr. Shen argues that recording extremes of blood pressure may not accurately reflect blood pressure exposure over time. Whilst we agree, how blood pressure exposure is modelled in observational studies should be considered [3]. Importantly, there appears to be no association between the arithmetic mean of blood pressure over time and outcomes following cardiac arrest [4]. This may occur as periods of hypertension numerically average out periods of hypotension. Laurikkala and colleagues found an association between lowest recorded mean arterial pressure (MAP) in the first 6 h and mortality but no association between time-weighted average MAP (TWA-MAP) and mortality [5]. Kilgannon and colleagues found no association between TWA-MAP and neurological outcome [4]. Chui and colleagues used an integral of blood pressure and time below a MAP threshold of 65 mmHg to measure exposure to hypotension. They found that this area below a threshold was associated with mortality, whereas mean MAP was not [6]. Whilst we acknowledge that the inability to present time-weighted average blood pressure is a weakness of our study, exposure to extremes of blood pressure is consistently associated with harm.

Finally, Dr. Shen poses the question of how to manage a patient with a MAP ranging from 75 to 80 mmHg considering our findings [1]. Skrifvars and colleagues conducted a Beyesian model meta-analysis of randomized controlled trials to predict the likelihood of future trials detecting a benefit with a higher MAP target following cardiac arrest. The posterior probability of achieving at least a 5% reduction in mortality or poor neurological outcome was < 50% using a non-informative prior. Using an informative pessimistic prior, the posterior probability fell to < 0.5%. Thus, the authors could not exclude a risk of harm, leading them to conclude that “…caution must be exercised before deviating from the current guideline recommendation of MAP > 65 mmHg…” [7]. In our study, crossing a lower threshold of < 60 mmHg or an upper threshold > 104 mmHg was associated with increased mortality [2, 8]. These findings are largely consistent with recommendations to avoid MAP < 65 mmHg and MAP > 100 mmHg made by the European Resuscitation Council and International Liaison Committee on Resuscitation [9, 10]. We agree with Dr. Shen that more randomized controlled trial evidence is required before deviating from current guidelines. The results of the Sedation, Temperature, and Pressure After Cardiac Arrest and Resuscitation (STEPCARE) trial (NCT05564754) will help inform these outstanding questions.

Availability of data and materials

Not applicable.

Abbreviations

MAP:

Mean arterial pressure

TWA-MAP:

Time-weighted average mean arterial pressure

References

  1. Shen S. Analysis of static parameters in retrospective studies: limitations and interpretation. Crit Care. 2023;27:1–2.

    Article  Google Scholar 

  2. McGuigan PJ, Giallongo E, Blackwood B, Doidge J, Harrison DA, Nichol AD, et al. The effect of blood pressure on mortality following out-of-hospital cardiac arrest: a retrospective cohort study of the United Kingdom Intensive Care National Audit and Research Centre database. Crit Care. 2023;27(1):4. https://doi.org/10.1186/s13054-022-04289-2. (Erratum in: Crit Care. 2023;27(1):169).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhate TD, McDonald B, Sekhon MS, Griesdale DEG. Association between blood pressure and outcomes in patients after cardiac arrest: a systematic review. Resuscitation. 2015;97:1–6.

    Article  PubMed  Google Scholar 

  4. Kilgannon JH, Roberts BW, Jones AE, Mittal N, Cohen E, Mitchell J, et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest*. Crit Care Med. 2014;42(9):2083–91.

    Article  PubMed  Google Scholar 

  5. Laurikkala J, Wilkman E, Pettilä V, Kurola J, Reinikainen M, Hoppu S, et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: associations with one-year neurologic outcome. Resuscitation. 2016;105:116–22.

    Article  PubMed  Google Scholar 

  6. Chiu YK, Lui CT, Tsui KL. Impact of hypotension after return of spontaneous circulation on survival in patients of out-of-hospital cardiac arrest. Am J Emerg Med. 2018;36(1):79–83.

    Article  PubMed  Google Scholar 

  7. Skrifvars MB, Ameloot K, Åneman A. Blood pressure targets and management during post-cardiac arrest care. Resuscitation. 2023;189: 109886.

    Article  PubMed  Google Scholar 

  8. Russo JJ, Di Santo P, Simard T, James TE, Hibbert B, Couture E, et al. Optimal mean arterial pressure in comatose survivors of out-of-hospital cardiac arrest: an analysis of area below blood pressure thresholds. Resuscitation. 2018;128:175–80.

    Article  PubMed  Google Scholar 

  9. Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47(4):369–421.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication a consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118(23):2452–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

PJMG receives funding from Belfast Health and Social Care Trust, Research Charitable Funds (Reference J‐2223‐152).

Author information

Authors and Affiliations

Authors

Contributions

PJMG wrote the first draft of this letter. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peter J. McGuigan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

MBS has received speakers fees from BARD Medical (Ireland). The remaining authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGuigan, P.J., Giallongo, E., Nichol, A.D. et al. A reply to analysis of static parameters in retrospective studies: limitations and interpretation. Crit Care 27, 423 (2023). https://doi.org/10.1186/s13054-023-04709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-023-04709-x