Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–111.
Article
PubMed
PubMed Central
Google Scholar
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010;362(19):1804–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur Respir J. 2017;50(3):1700582.
Article
PubMed
Google Scholar
Vallecoccia MS, Dominedo C, Cutuli SL, Martin-Loeches I, Torres A, De Pascale G. Is ventilated hospital-acquired pneumonia a worse entity than ventilator-associated pneumonia? Eur Respir Rev. 2020;29(157): 200023.
Article
PubMed
PubMed Central
Google Scholar
Bart SM, Rubin D, Kim P, Farley JJ, Nambiar S. Trends in hospital-acquired and ventilator-associated bacterial pneumonia trials. Clin Infect Dis. 2021;73(3):e602–8.
Article
PubMed
Google Scholar
Zilberberg MD, Nathanson BH, Puzniak LA, Shorr AF. Descriptive epidemiology and outcomes of nonventilated hospital-acquired, ventilated hospital-acquired, and ventilator-associated bacterial pneumonia in the United States, 2012–2019. Crit Care Med. 2021;50(3):460–8.
PubMed Central
Google Scholar
Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18(6):596.
Article
PubMed
PubMed Central
Google Scholar
Albin OR, Henig O, Patel TS, Valley TS, Pogue JM, Petty LA, et al. Clinical implications of microbiologic treatment failure in the setting of clinical cure of bacterial pneumonia. Clin Infect Dis. 2020;71(12):3033–41.
Article
CAS
PubMed
Google Scholar
Bonine NG, Berger A, Altincatal A, Wang R, Bhagnani T, Gillard P, et al. Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious gram-negative bacterial infections. Am J Med Sci. 2019;357(2):103–10.
Article
PubMed
Google Scholar
Klinker K, DePestel D, Motyl M, DeRyke C, editors. Frequency of carbapenem-resistant Pseudomonas aeruginosa among respiratory pathogens impacts first-line beta-lactam susceptibility: potential role for ceftolozane/tazobactam and/or imipenem/relebactam. In: IDWeek; 2020; Virtual Meeting.
Lob SH, DePestel DD, DeRyke CA, Kazmierczak KM, Young K, Motyl MR, et al. Ceftolozane/tazobactam and imipenem/relebactam cross-susceptibility among clinical isolates of Pseudomonas aeruginosa from patients with respiratory tract infections in ICU and non-ICU wards-SMART United States 2017–2019. Open Forum Infect Dis. 2021;8(7):ofab320.
Article
PubMed
PubMed Central
Google Scholar
McCann E, Srinivasan A, DeRyke CA, Ye G, DePestel DD, Murray J, et al. Carbapenem-nonsusceptible gram-negative pathogens in ICU and non-ICU settings in US hospitals in 2017: a multicenter study. Open Forum Infect Dis. 2018;5(10):ofy241.
Article
PubMed
PubMed Central
Google Scholar
Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009–2012. Int J Antimicrob Agents. 2014;43(4):328–34.
Article
CAS
PubMed
Google Scholar
World Health Organization. Global action plan on antimicrobial resistance. Geneva: WHO Press; 2018.
Google Scholar
Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med. 2017;43(10):1464–75.
Article
CAS
PubMed
Google Scholar
Rodrigo-Troyano A, Sibila O. The respiratory threat posed by multidrug resistant Gram-negative bacteria. Respirology. 2017;22(7):1288–99.
Article
PubMed
Google Scholar
Zhanel GG, Chung P, Adam H, Zelenitsky S, Denisuik A, Schweizer F, et al. Ceftolozane/tazobactam: a novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74(1):31–51.
Article
CAS
PubMed
Google Scholar
Castanheira M, Duncan LR, Mendes RE, Sader HS, Shortridge D. Activity of ceftolozane-tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates collected from respiratory tract specimens of hospitalized patients in the United States during 2013 to 2015. Antimicrob Agents Chemother. 2018;62:e02125-e2217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlowsky JA, Kazmierczak KM, Young K, Motyl MR, Sahm DF. In vitro activity of ceftolozane/tazobactam against phenotypically defined extended-spectrum beta-lactamase (ESBL)-positive isolates of Escherichia coli and Klebsiella pneumoniae isolated from hospitalized patients (SMART 2016). Diagn Microbiol Infect Dis. 2020;96(4):114925.
Article
CAS
PubMed
Google Scholar
Kuo SC, Liu CE, Lu PL, Chen YS, Lu MC, Ko WC, et al. Activity of ceftolozane-tazobactam against Gram-negative pathogens isolated from lower respiratory tract infections in the Asia-Pacific region: SMART 2015–2016. Int J Antimicrob Agents. 2020;55(3):105883.
Article
CAS
PubMed
Google Scholar
Shortridge D, Pfaller MA, Streit JM, Flamm RK. Antimicrobial activity of ceftolozane/tazobactam tested against contemporary (2015–2017) Pseudomonas aeruginosa isolates from a global surveillance programme. J Glob Antimicrob Resist. 2020;21:60–4.
Article
PubMed
Google Scholar
Karlowsky JA, Lob SH, Young K, Motyl MR, Sahm DF. Activity of ceftolozane/tazobactam against Gram-negative isolates from patients with lower respiratory tract infections—SMART United States 2018–2019. BMC Microbiol. 2021;21(1):74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kollef MH, Nováček M, Kivistik Ü, Réa-Neto Á, Shime N, Martin-Loeches I, et al. Ceftolozane–tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019;19(12):1299–311.
Article
CAS
PubMed
Google Scholar
Ryan K, Karve S, Peeters P, Baelen E, Potter D, Rojas-Farreras S, et al. The impact of initial antibiotic treatment failure: Real-world insights in healthcare-associated or nosocomial pneumonia. J Infect. 2018;77(1):9–17.
Article
PubMed
Google Scholar
ZERBAXA [prescribing information]. Whitehouse Station (NJ): Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc.; 2019.
M100‑ED30: 2020 Performance Standards for Antimicrobial Susceptibility Testing [Internet]. Clinical Laboratory Standards Institute. 2020. Available from: https://clsi.org/standards/products/free‑resources/access‑our‑free‑resources/.
Yan X, Su XG. Stratified Wilson and Newcombe confidence intervals for multiple binomial proportions. Stat Biopharm Res. 2010;2(3):329–35.
Article
Google Scholar
Timsit JF, Huntington JA, Wunderink RG, Shime N, Kollef MH, Kivistik U, et al. Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial. Crit Care. 2021;25(1):290.
Article
PubMed
PubMed Central
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45:5–32.
Article
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.
Google Scholar
Bassetti M, Montero JG, Paiva JA. When antibiotic treatment fails. Intensive Care Med. 2018;44(1):73–5.
Article
PubMed
Google Scholar
Weiss E, Zahar J-R, Alder J, Asehnoune K, Bassetti M, Bonten MJ, et al. Elaboration of consensus clinical endpoints to evaluate antimicrobial treatment efficacy in future hospital-acquired/ventilator-associated bacterial pneumonia clinical trials. Clin Infect Dis. 2019;69(11):1912–8.
Article
PubMed
PubMed Central
Google Scholar
Scheeren TWL, Bakker J, De Backer D, Annane D, Asfar P, Boerma EC, et al. Current use of vasopressors in septic shock. Ann Intensive Care. 2019;9(1):20.
Article
PubMed
PubMed Central
Google Scholar
Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother. 2015;70(1):207–16.
Article
CAS
PubMed
Google Scholar
Frippiat F, Vercheval C, Layios N. Meropenem: continuous or extended infusion? Crit Care. 2020;24(1):192.
Article
PubMed
PubMed Central
Google Scholar
Shorr AF, Bruno CJ, Zhang Z, Jensen E, Gao W, Feng HP, et al. Ceftolozane/tazobactam probability of target attainment and outcomes in participants with augmented renal clearance from the randomized phase 3 ASPECT-NP trial. Crit Care. 2021;25(1):354.
Article
PubMed
PubMed Central
Google Scholar