Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004;32(1):1–12.
Article
CAS
PubMed
Google Scholar
López A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32(1):21–30.
Article
PubMed
CAS
Google Scholar
Vincent JL, Privalle CT, Singer M, Lorente JA, Boehm E, Meier-Hellmann A, et al. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med. 2015;43(1):57–64.
Article
CAS
PubMed
Google Scholar
Feihl F, Waeber B, Liaudet L. Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther. 2001;91(3):179–213.
Article
CAS
PubMed
Google Scholar
Leiper J, Nandi M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov. 2011;10(4):277–91.
Article
CAS
PubMed
Google Scholar
Schwedhelm E, Boger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol. 2011;7(5):275–85.
Article
CAS
PubMed
Google Scholar
Cziráki A, Lenkey Z, Sulyok E, Szokodi I, Koller A. L-arginine-nitric oxide-asymmetric dimethylarginine pathway and the coronary circulation: translation of basic science results to clinical practice. Front Pharmacol. 2020;11: 569914.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lambden S, Kelly P, Ahmetaj-Shala B, Wang Z, Lee B, Nandi M, et al. Dimethylarginine dimethylaminohydrolase 2 regulates nitric oxide synthesis and hemodynamics and determines outcome in polymicrobial sepsis. Arterioscler Thromb Vasc Biol. 2015;35(6):1382–92.
Article
CAS
PubMed
Google Scholar
Aggarwal S, Gross CM, Kumar S, Dimitropoulou C, Sharma S, Gorshkov BA, et al. Dimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury. Am J Respir Cell Mol Biol. 2013;50(3):614–25.
Article
CAS
Google Scholar
Lee Y, Singh J, Scott SR, Ellis B, Zorlutuna P, Wang M. A Recombinant DDAH Based Biotherapeutics to Pharmacologically Lower ADMA, thus Improving Post Ischemic Cardiac Function and Cardiomyocyte Mitochondrial Activity. Molecular Pharmacology. 2022:MOLPHARM-AR-2021–000394.
Lee Y, Mehrotra P, Basile D, Ullah M, Singh A, Skill N, et al. Specific lowering of asymmetric dimethylarginine by pharmacological dimethylarginine dimethylaminohydrolase improves endothelial function, reduces blood pressure and ischemia-reperfusion injury. J Pharmacol Exp Ther. 2021;376(2):181–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luiking YC, Poeze M, Ramsay G, Deutz NEP. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52.
Article
CAS
PubMed
Google Scholar
Kao CC, Bandi V, Guntupalli KK, Wu M, Castillo L, Jahoor F. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117(1):23–30.
Article
CAS
Google Scholar
Villalpando S, Gopal J, Balasubramanyam A, Bandi VP, Guntupalli K, Jahoor F. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis. Am J Clin Nutr. 2006;84(1):197–203.
Article
CAS
PubMed
Google Scholar
Davis JS, Yeo TW, Thomas JH, McMillan M, Darcy CJ, McNeil YR, et al. Sepsis-associated microvascular dysfunction measured by peripheral arterial tonometry: an observational study. Crit Care. 2009;13(5):R155.
Article
PubMed
PubMed Central
Google Scholar
Banjarnahor S, Rodionov RN, König J, Maas R. Transport of L-arginine related cardiovascular risk markers. J Clin Med. 2020;9(12):3975.
Article
CAS
PubMed Central
Google Scholar
Porcelli V, Longo A, Palmieri L, Closs EI, Palmieri F. Asymmetric dimethylarginine is transported by the mitochondrial carrier SLC25A2. Amino Acids. 2016;48(2):427–36.
Article
CAS
PubMed
Google Scholar
Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O’Hara B, et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med. 2007;13(2):198–203.
Article
CAS
PubMed
Google Scholar
Li D, Guo R, Chen QQ, Hu CP, Chen X. Increased plasma level of asymmetric dimethylarginine in hypertensive rats facilitates platelet aggregation: role of plasma tissue factor. Can J Physiol Pharmacol. 2011;89(3):151–8.
Article
CAS
PubMed
Google Scholar
Mangoni AA, Tommasi S, Sotgia S, Zinellu A, Paliogiannis P, Piga M, et al. Asymmetric dimethylarginine: a key player in the pathophysiology of endothelial dysfunction, vascular inflammation and atherosclerosis in rheumatoid arthritis? Curr Pharm Des. 2021;27(18):2131–40.
Article
CAS
PubMed
Google Scholar
Kuwai T, Hayashi J. Nitric oxide pathway activation and impaired red blood cell deformability with hypercholesterolemia. J Atheroscler Thromb. 2006;13(6):286–94.
Article
CAS
PubMed
Google Scholar
Sharma S, Smith A, Kumar S, Aggarwal S, Rehmani I, Snead C, et al. Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury: role of asymmetric dimethylarginine. Vascul Pharmacol. 2010;52(5–6):182–90.
Article
CAS
PubMed
Google Scholar
Huet O, Dupic L, Harrois A, Duranteau J. Oxidative stress and endothelial dysfunction during sepsis. Front Biosci (Landmark Ed). 2011;16:1986–95.
Article
CAS
Google Scholar
Augustyniak RA, Victor RG, Morgan DA, Zhang W. L-NAME- and ADMA-induced sympathetic neural activation in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R726–32.
Article
CAS
PubMed
Google Scholar
Mortensen KM, Itenov TS, Haase N, Müller RB, Ostrowski SR, Johansson PI, et al. High levels of methylarginines were associated with increased mortality in patients with severe sepsis. Shock. 2016;46(4):365–72.
Article
CAS
PubMed
Google Scholar
El-Khoury JM. The dimethylarginines (asymmetric and symmetric): a deadly combination in sepsis. J Appl Lab Med. 2021;6(3):577–9.
Article
PubMed
Google Scholar
van Wijk XMR, Yun C, Lynch KL. Evaluation of biomarkers in sepsis: high dimethylarginine (ADMA and SDMA) concentrations are associated with mortality. J Appl Lab Med. 2021;6(3):592–605.
Article
PubMed
Google Scholar
Winkler MS, Nierhaus A, Rösler G, Lezius S, Harlandt O, Schwedhelm E, et al. Symmetrical (SDMA) and asymmetrical dimethylarginine (ADMA) in sepsis: high plasma levels as combined risk markers for sepsis survival. Crit Care. 2018;22(1):216.
Article
PubMed
PubMed Central
Google Scholar
Coskun CN, Usanmaz SE, Savci V, Demirel-Yilmaz E. Time-dependent production of endothelium-related biomarkers is affected differently in hemorrhagic and septic shocks. Inflammation. 2018;41(1):33–41.
Article
CAS
PubMed
Google Scholar
Hansen MB, Rasmussen LS, Garred P, Pilely K, Wahl AM, Perner A, et al. Associations of plasma nitrite, L-arginine and asymmetric dimethylarginine with morbidity and mortality in patients with necrotizing soft tissue infections. Shock. 2018;49(6):667–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tesfai A, MacCallum N, Kirkby NS, Gashaw H, Gray N, Want E, et al. Metabolomic profiling of amines in sepsis predicts changes in NOS canonical pathways. PLoS ONE. 2017;12(8): e0183025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Winkler MS, Kluge S, Holzmann M, Moritz E, Robbe L, Bauer A, et al. Markers of nitric oxide are associated with sepsis severity: an observational study. Crit Care. 2017;21(1):189.
Article
PubMed
PubMed Central
Google Scholar
Németh B, Kiss I, Péter I, Ajtay Z, Németh Á, Márk L, et al. Monitoring of L-arginine and endogenous dimethylarginines in survivor septic patients - A Pilot Study. In Vivo. 2016;30(5):663–9.
PubMed
Google Scholar
Davis JS, Darcy CJ, Yeo TW, Jones C, McNeil YR, Stephens DP, et al. Asymmetric dimethylarginine, endothelial nitric oxide bioavailability and mortality in sepsis. PLoS ONE. 2011;6(2): e17260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner T, Fleming TH, Rosenhagen C, Krauser U, Mieth M, Bruckner T, et al. L-arginine and asymmetric dimethylarginine are early predictors for survival in septic patients with acute liver failure. Mediators Inflamm. 2012;2012: 210454.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shafran I, Probst V, Campean J, Sadushi-Kolici R, Gerges C, Lang I, et al. The role of asymmetric dimethylarginine (ADMA) in the follow-up of patients with precapillary pulmonary hypertension (PH). Eur Heart J. 2020;41(Supplement_2).
Maas R, Dentz L, Schwedhelm E, Thoms W, Kuss O, Hiltmeyer N, et al. Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine predict adverse events in patients undergoing noncardiac surgery. Crit Care Med. 2007;35(8):1876–81.
Article
CAS
PubMed
Google Scholar
Gardiner SM, Kemp PA, Bennett T, Palmer RM, Moncada S. Regional and cardiac haemodynamic effects of NG, NG, dimethyl-L-arginine and their reversibility by vasodilators in conscious rats. Br J Pharmacol. 1993;110(4):1457–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6(2):82–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkmann SJ, de Boer MC, Buijs N, van Leeuwen PA. Asymmetric dimethylarginine and critical illness. Curr Opin Clin Nutr Metab Care. 2014;17(1):90–7.
CAS
PubMed
Google Scholar
Koch A, Weiskirchen R, Kunze J, Dückers H, Bruensing J, Buendgens L, et al. Elevated asymmetric dimethylarginine levels predict short- and long-term mortality risk in critically ill patients. J Crit Care. 2013;28(6):947–53.
Article
CAS
PubMed
Google Scholar
Ghashut RA, Blackwell S, Ryan S, Willox L, McMillan DC, Kinsella J, et al. Assessment of asymmetrical dimethylarginine metabolism in patients with critical illness. Eur J Clin Invest. 2017;47(4):279–88.
Article
CAS
PubMed
Google Scholar
Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9 Suppl 4(Suppl 4):S13-S9.
O’Dwyer MJ, Dempsey F, Crowley V, Kelleher DP, McManus R, Ryan T. Septic shock is correlated with asymmetrical dimethyl arginine levels, which may be influenced by a polymorphism in the dimethylarginine dimethylaminohydrolase II gene: a prospective observational study. Crit Care. 2006;10(5):R139.
Article
PubMed
PubMed Central
Google Scholar
Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med. 2021;53(7):1116–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA. 2014;111(43):15514–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durand A, Duburcq T, Dekeyser T, Neviere R, Howsam M, Favory R, et al. Involvement of mitochondrial disorders in septic cardiomyopathy. Oxid Med Cell Longev. 2017;2017:4076348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fujii H, Takiuchi S, Kawano Y, Fukagawa M. Putative role of asymmetric dimethylarginine in microvascular disease of kidney and heart in hypertensive patients. Am J Hypertens. 2008;21(6):650–6.
Article
CAS
PubMed
Google Scholar
Nakayama Y, Ueda S, Yamagishi S, Obara N, Taguchi K, Ando R, et al. Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int. 2014;85(3):570–8.
Article
CAS
PubMed
Google Scholar
Stuhlinger MC, Conci E, Haubner BJ, Stocker EM, Schwaighofer J, Cooke JP, et al. Asymmetric dimethyl L-arginine (ADMA) is a critical regulator of myocardial reperfusion injury. Cardiovasc Res. 2007;75(2):417–25.
Article
PubMed
CAS
Google Scholar
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol. 2015;35(1):96–107.
Article
CAS
PubMed
Google Scholar
Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal. 2021.
Ganz T, Wainstein J, Gilad S, Limor R, Boaz M, Stern N. Serum asymmetric dimethylarginine and arginine levels predict microvascular and macrovascular complications in type 2 diabetes mellitus. Diabetes Metab Res Rev. 2017;33(2):e2836.
Article
CAS
Google Scholar
Xiong Y, He YL, Li XM, Nie F, Zhou XK. Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats. Eur J Pharmacol. 2021;902: 174081.
Article
CAS
PubMed
Google Scholar
Davis JS, Anstey NM. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit Care Med. 2011;39(2):380–5.
Article
CAS
PubMed
Google Scholar
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients. 2015;7(3):1426–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanuseputero SA, Lin M-T, Yeh S-L, Yeh C-L. Intravenous arginine administration downregulates NLRP3 inflammasome activity and attenuates acute kidney injury in mice with polymicrobial sepsis. Mediators Inflamm. 2020;2020:3201635.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeh CL, Pai MH, Shih YM, Shih JM, Yeh SL. Intravenous arginine administration promotes proangiogenic cells mobilization and attenuates lung injury in mice with polymicrobial sepsis. Nutrients. 2017;9(5):507.
Article
PubMed Central
CAS
Google Scholar
Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003;29(5):834–40.
Article
PubMed
Google Scholar
Kieft H, Roos AN, van Drunen JD, Bindels AJ, Bindels JG, Hofman Z. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med. 2005;31(4):524–32.
Article
PubMed
Google Scholar
Luiking YC, Poeze M, Deutz NE. Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond). 2015;128(1):57–67.
Article
CAS
Google Scholar
Trzeciak S, Glaspey LJ, Dellinger RP, Durflinger P, Anderson K, Dezfulian C, et al. Randomized controlled trial of inhaled nitric oxide for the treatment of microcirculatory dysfunction in patients with sepsis*. Crit Care Med. 2014;42(12):2482–92.
Article
CAS
PubMed
Google Scholar
Williams AT, Muller CR, Govender K, Navati MS, Friedman AJ, Friedman JM, et al. Control of systemic inflammation through early nitric oxide supplementation with nitric oxide releasing nanoparticles. Free Radic Biol Med. 2020;161:15–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Waele E, Malbrain M, Spapen H. Nutrition in sepsis: a bench-to-bedside review. Nutrients. 2020;12(2):395.
Article
PubMed Central
CAS
Google Scholar
Liu X, Hou L, Xu D, Chen A, Yang L, Zhuang Y, et al. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide Biol Chem. 2016;54:73–81.
Article
CAS
Google Scholar
Jacobi J, Maas R, Cardounel AJ, Arend M, Pope AJ, Cordasic N, et al. Dimethylarginine dimethylaminohydrolase overexpression ameliorates atherosclerosis in apolipoprotein E-deficient mice by lowering asymmetric dimethylarginine. Am J Pathol. 2010;176(5):2559–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland MR, Ragina NP, Sarkar J, Uyehara CF, Senagore AJ. Is arginine/asymetric dimethylarginine ratio depletion an indicator of insufficient resuscitation in a porcine model of hemorrhage-reperfusion? Surgery. 2014;156(4):861–8.
Article
PubMed
Google Scholar
Wang Z, Lambden S, Taylor V, Sujkovic E, Nandi M, Tomlinson J, et al. Pharmacological inhibition of DDAH1 improves survival, haemodynamics and organ function in experimental septic shock. Biochem J. 2014;460(2):309–16.
Article
CAS
PubMed
Google Scholar
Lee Y, Steinbach SML, Basile D, Singh J. A Therapeutic extracorporeal device for specific removal of pathologic asymmetric dimethylarginine from the blood. Blood Purif. 2022:1–10.
Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Ueyama T, Ishida T, et al. Resistance to endotoxin shock in transgenic mice overexpressing endothelial nitric oxide synthase. Circulation. 2000;101(8):931–7.
Article
CAS
PubMed
Google Scholar
Ichinose F, Buys ES, Neilan TG, Furutani EM, Morgan JG, Jassal DS, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res. 2007;100(1):130–9.
Article
CAS
PubMed
Google Scholar
Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, et al. Nitric oxide synthase 2 enhances the survival of mice during Salmonella typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic Biol Med. 2018;116:73–87.
Article
CAS
PubMed
Google Scholar
Letson HL, Dobson GP. The role of nitric oxide in the efficacy of adenosine, lidocaine, and magnesium treatment for experimental hemorrhagic shock in rats. Curr Ther Res Clin Exp. 2021;95: 100655.
Article
PubMed
PubMed Central
Google Scholar
Hawkes MT, Conroy AL, Opoka RO, Hermann L, Thorpe KE, McDonald C, et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malar J. 2015;14(1):421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moni M, Madathil T, Sathyapalan DT, Menon V, Gutjahr G, Edathadathil F, et al. Clinical efficacy of inhaled nitric oxide in preventing the progression of moderate to severe COVID-19 and its correlation to viral clearance: results of a Pilot Study. Infect Microb Diseases. 2022;4(1):26.
Article
CAS
Google Scholar
Darcy CJ, Davis JS, Woodberry T, McNeil YR, Stephens DP, Yeo TW, et al. An observational cohort study of the kynurenine to tryptophan ratio in sepsis: association with impaired immune and microvascular function. PLoS ONE. 2011;6(6): e21185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med. 2010;16(3):279–85.
Article
CAS
PubMed
PubMed Central
Google Scholar