Skip to main content

Renin–angiotensin system dysregulation in critically ill patients with acute respiratory distress syndrome due to COVID-19: a preliminary report

The renin–angiotensin system (RAS) may have an important role into the pathogenesis of the COVID-19. Indeed, SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) to gain entry to host cells. ACE2 is a peptidase that cleaves the potent vasoconstrictor angiotensin II (Ang II) to generate angiotensin 1–7 (Ang 1–7), a heptapeptide having vasodilator and anti-inflammatory function. Thus, ACE2 is a crucial counter-regulatory component of the RAS [1]. From March 9 to March 27, 2020, we analyzed plasma levels of renin, angiotensin I (Ang I), Ang II and Ang 1–7 in 32 consecutive patients with laboratory-confirmed SARS-Cov-2 infection and acute respiratory distress syndrome (ARDS) within 24 h of admission to ICU, approved by the Ethical Committee of Fondazione Policlinico Gemelli. All samples were drawn at morning. Before sample collection the hemodynamic parameters were optimized according to standard of care of our institution. RAS peptide concentrations were compared between survivors and non-survivors and correlated with clinical parameters. Compared to survivors, non-survivors had higher serum renin with lower Ang I, Ang II and Ang 1–7 (Table 1). The results were similar excluding from analysis 4 patients who were taking RAS inhibitors at inclusion (Table 2). Patients who required invasive mechanical ventilation (IMV) had lower Ang 1–7 than patients who never required IMV (214 pg/ml [IQR: 163–298] vs 335 [IQR: 259–499], p = 0.01). Our observations are consistent with a previous study on patients with vasodilatory shock, demonstrating that renin levels above the median of study population were associated with an increased risk of mortality. In these patients, treatment with synthetic Ang II reduced renin concentrations and the risk of mortality [2]. Therefore, the authors speculated that exogenous Ang II modulated the inflammatory response caused by excess renin. Furthermore, renin concentrations were positively correlated to Ang I/II ratios denoting an impaired conversion of Ang I to Ang II by angiotensin-converting enzyme (ACE). In our research, although not correlated to serum renin, Ang I/II ratios were markedly higher than those reported in healthy subjects (median Ang I/II ratio 1.8 vs 0.4, respectively) [3]. This relative Ang II deficiency is coherent with older studies on patients with ARDS unrelated to SARS-CoV-2 reporting a defect of endothelial–bound ACE activity due to endothelial injury [4]. Indeed, in patients with COVID-19 there is evidence of vascular involvement with diffuse inflammation which can result in widespread endothelial dysfunction [3, 5]. However, we did not measure all the angiotensin peptides, and hence, we cannot exclude an enhanced conversion of Ang I and Ang II to downstream products other than Ang 1–7, such as angiotensin 1–9 and angiotensin 1–5. Previous studies reported that some patients with COVID-19 and acute hypoxemic respiratory failure present near normal lung mechanics indicating that a loss of lung perfusion regulation may account for gas impairment [6]. In our series respiratory system compliance (Crs) was obtained in 18 out of 21 patients who received IMV. Median Crs was 39 ml/cm H2O [IQR: 38–52] and 6 out of 18 patients had a preserved Crs (52 ml/cm H2O [IQR: 52–55]). This subgroup of 6 patients had similar Ang II plasma levels despite renin concentrations significantly higher than the 12 patients with reduced Crs (median renin [IQR] 166.8 pg/ml [114.2–255.2] vs 13.6 [9–66.6], p = 0.02). Thus, the development of hypoxemia without marked loss of aerated lung could be explained by the worsening of ventilation perfusion mismatch induced by inadequate Ang II production. These preliminary data suggest that a more efficient RAS axis correlate with a better outcome in patients with ARDS due to SARS-Cov-2. Although the obvious limitations of our small, observational study preclude definitive conclusions, these findings could be considered hypothesis generating for future researches.

Table 1 Clinical characteristics, RAS peptides levels and outcomes in the total cohort
Table 2 RAS peptides levels based on sensitivity analysis (*)

Availability of data and materials

After publication, the data will be made available to others on reasonable requests to the corresponding author. A proposal with detailed description of study objectives and statistical analysis plan will be needed for evaluation of the reasonability of requests. De-identified participant data will be provided after approval from the corresponding author.

.

References

  1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–90.

    Article  CAS  Google Scholar 

  2. Bellomo R, Forni LG, Busse LW, McCurdy MT, Ham KR, Boldt DW, et al. Renin and survival in patients given angiotensin II for catecholamine-resistant vasodilatory shock. A clinical trial. Am J Resp Crit Care Med. 2020;202:1253–61.

  3. Bellomo R, Wunderink RW, Szerlip H, et al. Angiotensin I and angiotensin II concentrations and their ratio in catecholamine-resistant vasodilatory shock. Crit Care. 2020;24:43.

    Article  Google Scholar 

  4. Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P, Catravas JD, Dafni UG, Langleben D, Roussos C. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation. 2000;102(16):2011–8.

    Article  CAS  Google Scholar 

  5. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8.

    Article  CAS  Google Scholar 

  6. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrea Urbani (Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Rome Italy; Università Cattolica del Sacro Cuore, Rome – Italy), for his help to critical revision of the article and Eliana Troiani (Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS; Università Cattolica del Sacro Cuore, Rome – Italy) for acquisition and analysis of the data.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Concept: DE, LM, and MA. Data collection: SLC, CR, and FA. Data cleaning and statistical analysis: LM, CR and FA. Manuscript preparation: DE, LM, and MA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luca Montini.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethical Committee of the Fondazione Policlinico Gemelli (Approval Number: 3146). All patients or next of kin provided a verbal informed consent because of isolation precautions according to local protocol approved by hospital authorities.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleuteri, D., Montini, L., Cutuli, S.L. et al. Renin–angiotensin system dysregulation in critically ill patients with acute respiratory distress syndrome due to COVID-19: a preliminary report. Crit Care 25, 91 (2021). https://doi.org/10.1186/s13054-021-03507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-021-03507-7