Prompt recognition of ML dysfunction is vital for safety, allowing for elective replacement in a controlled manner. On the other hand, replacement of an adequately functioning device—requiring temporary cessation of ECMO support—places the patient at unnecessary risk while consuming a limited and expensive resource.
Based on the pathophysiology of the ML, replacement may be required for one of three reasons: if there is (A) an associated hematologic abnormality, (B) an increasing obstruction to blood flow, or (C) inadequate gas exchange (Fig. 1).
Hematologic abnormalities
The presence of an ECMO coagulopathy, typified by elevated clotting times, hypofibrinogenemia, thrombocytopenia, and elevated D-dimer without alternate explanation raises concern for circuit-related coagulopathy (CRC). Alternatively, evidence of hemolysis with elevated plasma-free hemoglobin, without alternate explanation, is concerning for circuit-related hemolysis. In both cases, the diagnosis is presumptive and only confirmed when values normalize after circuit exchange [6].
Obstruction to blood flow
Increasing ΔP/BFR suggests increasing ML clot burden. As different MLs have different RML, no cut-off values of ΔP define ML dysfunction and the trend should be carefully considered. A rapidly increasing ΔP, even if not associated with reduced gas exchange efficiency, is often a harbinger of impending ML failure and should prompt consideration of ML exchange. When ML pressures are not measured, an increasing pump speed requirement to maintain a stable BFR can serve as a surrogate for increasing ΔP, with the caveat that pump preload and afterload also affect this relationship.
Inadequate oxygen uptake
Worsening oxygenation during ECMO should prompt quantification of oxygen transfer. When the ML is no longer able to meet patient oxygen demand, ML exchange is indicated. There are three important considerations in making this decision.
First, it is necessary that measured V′O2 is truly a maximal value. If circuit BFR is low, for example, the blood will be fully saturated early in the ML path and reserve will exist for additional oxygen transfer as BFR is increased. Similarly, if CPreO2 is artificially elevated, due to high recirculation fraction or impaired tissue extraction, or if the fraction of delivered oxygen in the sweep gas (FDO2) is below 100%, the gradient driving oxygen transfer is reduced, and measured V′O2 may not represent maximal capacity. As such, BFR should be sufficiently high that further increases do not increase arterial saturation, recirculation fraction should be minimized, and ML FDO2 set to 100% to ensure an accurate assessment of maximal V′O2.
Second, though PPost-MLO2 less than 200 mmHg can suggest a failing ML [6], it is vital to calculate V′O2 for confirmation. In the setting of low CPreO2 or high circuit BFR, blood exiting the ML may not be fully saturated, with low PPostO2, despite normal V′O2. In this case, if the ML is exchanged, the patient is placed at risk without subsequent improvement in oxygen delivery.
Finally, no absolute values diagnose inadequate oxygen transfer and clinical context is important. In general, however, in a patient with hypoxemia and a ML with maximal V′O2 < 100–150 mL/min, ML exchange is typically indicated.
Inadequate carbon dioxide clearance
ML dysfunction can also manifest as inadequate CO2 clearance. Calculation of V′CO2 is not typically performed as it varies in a nonlinear fashion with sweep gas flow rate and requires sampling ML exhaust CO2 [10]. However, persistent PPost-MLCO2 greater than 40 mmHg [6] and clearance of less than 10 mmHg PCO2 between pre- and post-ML blood gases despite sweep gas flow rates of 10 L/min or greater is suggestive of ML dysfunction and ML exchange should be considered.