Skip to main content

Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia

  • The Correction to this article has been published in Critical Care 2020 24:665

Dear Editor,

Patients with ARDS due to COVID-19 are characterised by poor oxygenation with a various extent of pulmonary alterations [1]. Ventilation strategies for COVID-19 patients have been suggested basing on the pathophysiological evidence to date [1]; however, there are no data regarding the use of inhaled nitric oxide (iNO). We report herein our experience of iNO administration in COVID-19 mechanically ventilated patients with refractory hypoxaemia and/or right ventricular (RV) dysfunction. Refractory hypoxaemia was defined as PaO2/FiO2 < 100 despite high PEEP (≥ 10 cmH2O) and prone position. RV dysfunction was defined as acute cor pulmonale at echocardiography with hemodynamic impairment requiring infusion of inotropic drugs [2].

The NO/nitrogen mixture was introduced into the inspiratory limb of the ventilator tubing. Respiratory and haemodynamic parameters were collected immediately before iNO administration (t0) and after 15–30 min (t1). Responders were defined by an increase of PaO2/FiO2 > 20% compared to t0 [3].

Results in the text are shown as median [IQR] or number (%). Wilcoxon test for paired samples and Mann-Whitney test, as appropriate (MedCalc version 19.2 MedCalc Software), were performed considering p < 0.05 as significant.

iNO was used in sixteen out of 72 (22.2%) consecutive mechanically ventilated patients (66.0 [59.6–69.7] years old; 93% male). All patients required iNO for refractory hypoxaemia of whom 4 (25%) had also superimposed RV dysfunction, in 1 case associated with pulmonary embolism. The iNO dosage was 25 [20–30] parts per million (ppm).

Respiratory parameters at t0 and t1 are shown in Table 1. Overall, iNO did not improve oxygenation in our population. Only 4 (25%) patients were responders, of whom 3 have superimposed RV dysfunction, showing a median increase of PaO2/FiO2 of 26.9% [24.1–45.5]. A trend towards a larger improvement of oxygenation was observed in patients with RV dysfunction as compared with those without (PaO2/FiO2 increase 24.1% [9.2–43.5] vs. 3.3% [− 10.8–11.5], p = 0.069). Additionally, in responders, PaO2/FiO2 was 125.9 [82.2–259.2] at t1 and did not change (p = 0.875) 24 h later (146.4 [102.2–225.1]).

Table 1 Patients respiratory and hemodynamic parameters at the two time points

iNO is a free radical gas that diffuses across the alveolar-capillary membrane into the subjacent smooth muscle of pulmonary vessels enhancing endothelium-dependent vasorelaxation and improving oxygenation by increasing blood flow to ventilated lung units [3]. In previous studies, iNO was effective in improving PaO2/FiO2 and oxygenation index, although it failed in reversing acute lung injury, reducing mechanical ventilation days and mortality [4].

In our population, the improvement of oxygenation in responders was probably magnified by an iNO-induced decrease of RV afterload, enhancing cardiac output and finally leading to an increase of mixed venous oxygen saturation.

Although the reason why patients with refractory hypoxaemia without RV dysfunction were not responder is yet to be determined, some speculation can be done. Severe endothelial injury with cytoplasmic vacuolization and cell detachment in pulmonary middle-small arteries can make the pulmonary vessels less reactive to iNO stimulation [1, 5, 6]. This could also explain the loss of hypoxic vasoconstriction and lung perfusion regulation. However, whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus, part of the ARDS pathophysiology or the intertwine of both is still undetermined. Moreover, prone position and iNO were used in refractory hypoxaemia as an escalating treatment strategy. Therefore, a positive response to the prone position may have precluded the enrolment in our study of patients that could positively respond to iNO.

Conclusion

Overall, iNO did not improve oxygenation in COVID-19 patients with refractory hypoxaemia, when administered as a rescue treatment after prone position. A subgroup of patients with RV dysfunction was better iNO responders probably due to the haemodynamic improvement associated with RV unloading.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

  • 26 November 2020

    An amendment to this paper has been published and can be accessed via the original article.

References

  1. 1.

    Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020. Online ahead of print.

  2. 2.

    Narendra DK, Hess DR, Sessler CN, Belete HM, Guntupalli KK, Khusid F, Carpati CM, Astiz ME, Raoof S. Update in management of severe hypoxemic respiratory failure. Chest. 2017;152:867–79.

    Article  Google Scholar 

  3. 3.

    Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004;109:3106–11.

    Article  Google Scholar 

  4. 4.

    Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;2016(6):CD002787.

  5. 5.

    Copin MC, Parmentier E, Duburcq T, Poissy J, Mathieu D, Lille C-I, Anatomopathology G. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46(6):1124–6.

  6. 6.

    Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8.

Download references

Acknowledgements

We thank all the nurses and physicians involved in the management of such epidemics (Dr. Camporotondo Rita, Prof. Iotti Giorgio, Dr. Sciutti Fabio, Dr. Rodi Giuseppe, Dr. Orlando Anita, Dr. Maggio Giuseppe, Dr. Belliato Mirko, Dr. Radolovich Danila, Dr. Sala Gallini Giuseppe, Dr. Caneva Luca, Dr. Pagani Michele, Dr.Ferrari Fiorenza, Dr. Aliberti Anna, Dr. Visconti Federico, Dr. Repossi Filippo, Dr. Civardi Luca, Dr. Puce Roberta, Dr. Aliberti Anna, Dr.Bottazzi, Andrea, Dr. Amatu Alessandro, Dr. Lococo Claudia, Dr. Arisi Eric) and the Pavia COVID-19 Task Force (Dr. Marena Carlo, Dr. Calvi Monica, Dr. Grugnetti Giuseppina, Dr. Maurelli Marco, Dr. Muzzi Alba, Prof. Raffaele Bruno, Dr. Lago Paolo, Prof. Marseglia Gianluigi, Prof. Perlini Stefano, Dr. Palo Alessandra, Prof Baldanti Fausto, Prof. Corsico Angelo Guido, Prof. Di Sabatino Antonio, Prof. Iotti Giorgio, Prof. Benazzo Marco, Prof.Carlo Nicora, Prof.Antonio Triarico and Dr. Vincenzo Petronella).

Funding

No funding were received for the submitted work.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the data collection and redaction, writing and final revision before submission of the paper. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Guido Tavazzi.

Ethics declarations

Ethics approval and consent to participate

Informed consent was collected following the ad hoc procedures defined by the local Ethics Committee of Fondazione Policlinico San Matteo IRCCS for the COVID-19 pandemic.

Competing interests

FM received fees for lectures from GE Healthcare, Hamilton Medical, SEDA SpA, outside the present work. SM received fees for lectures from GE Healthcare, outside the present work. GT received fees for lectures by GE Healthcare, outside the present work. MP, VD and GR have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Following publication of the original article, the authors identified an error in an author name. The given name and family name were erroneously transposed for Marco Pozzi.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavazzi, G., Pozzi, M., Mongodi, S. et al. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia. Crit Care 24, 508 (2020). https://doi.org/10.1186/s13054-020-03222-9

Download citation