Skip to main content

Are we really preventing lung collapse with APRV?

The Original Article was published on 24 May 2018

Letter to the editor

APRV is an inverse ratio, pressure-controlled, intermittent mandatory ventilation without the restriction of spontaneous breathing, and it is based on the principle of the open-lung approach [1]. A recent meta-analysis reported beneficial effects of APRV on ventilator-free days and in-hospital mortality in acute hypoxic respiratory failure; however, the quality of evidence was low [2]. Therefore, it has been still controversial whether APRV is truly beneficial or not.

The main settings of APRV include PHigh, PLow, THigh, and TLow. There are numerous suggested ways for setting TLow to prevent alveolar collapse, e.g., setting TLow to create auto-PEEP empirically in a range of 0.2–0.8 s or to achieve 50–75% of peak expiratory flow or according to a certain time constant, and for a certain volume per release [1]. However, it has been unclear whether APRV truly stabilizes the alveoli and reduces lung stress and strain [3] since it is uncertain how much auto-PEEP we are creating and whether it is enough to prevent alveolar collapse especially in the setting of elevated alveolar elastance.

The measurement of trans-pulmonary pressure (PTP) using an esophageal balloon is a physiological way to detect and prevent lung stress and strain. Using that strategy has shown improved oxygenation and compliance, and trend towards improved mortality [4].

Recently, we reported that PTP in patients undergoing APRV was in the negative values (< 0 cmH2O) at all levels (0.1 to 0.8 s) of TLow suggesting the alveolar collapse but was actually positive after the application of an end-expiratory occlusion maneuver to measure total and auto-PEEP (the gold standard for measuring total PEEP) [5]. This case report demonstrates a new method to adjust TLow, also highlights the need to quantify the actual total PEEP at the end of TLow, and enforces the beneficial knowledge gained by esophageal balloon in APRV. The expiratory flow decay and the resultant auto-PEEP during APRV are variable among different ventilator manufacturer [1], and using a time constant may not be reliable as well. Recently, it was suggested that the use of tracheal pressure at the end of TLow as the amount of auto-PEEP might not be accurate either [3].

In conclusion, without the knowledge of end release trans-pulmonary pressure, we are driving blind not knowing how often we are causing alveolar collapse with APRV. Therefore, there is an emergent need for more research about its settings given its rising popularity.



Airway pressure release ventilation


Intrinsic PEEP


Positive end-expiratory pressure


Peak expiratory flow

P High :

The value of the high pressure (inspiratory pressure)

P Low :

The value of the low pressure (release pressure)

P TP :

Trans-pulmonary pressure

T High :

Time spent at high-pressure phase

T Low :

Time spent at low-pressure phase


  1. Daoud EG, Farag HL, Chatburn RL. Airway pressure release ventilation: what do we know? Respir Care. 2012;57(2):282–92.

    PubMed  Google Scholar 

  2. Carsetti A, Damiani E, Domizi R, Scorcella C, Pantanetti S, Falcetta S, Donati A, Adrario E. Airway pressure release ventilation during acute hypoxemic respiratory failure: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care. 2019;9(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nieman GF, Andrews P, Satalin J, Wilcox K, Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA, Habashi NM. Acute lung injury: how to stabilize a broken lung. Critical Care (London, England). 2018;22(1):136.

    Article  Google Scholar 

  4. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daoud EG, Yamasaki KH, Nakamoto K, Wheatley D. Esophageal pressure balloon and transpulmonary pressure monitoring in airway pressure release ventilation: a different approach. Can J Respir Ther. 2018;54(3):1–4.

    Article  Google Scholar 

Download references


Not applicable



Availability of data and materials

Not applicable

Author information

Authors and Affiliations



RS and ED were responsible for the conception of the letter. All authors drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ryota Sato.

Ethics declarations

Authors’ information

RS and NH are internal medicine residents in the USA. ED is a board-certified intensivist in the USA.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional information

This comment refers to the article available at

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, R., Hamahata, N. & Daoud, E.G. Are we really preventing lung collapse with APRV?. Crit Care 23, 178 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: