Angus DC, Pereira CA, Silva E: Epidemiology of severe sepsis around the world. Endocr Metab Immune Disord Drug Targets. 2006, 6: 207-212. 10.2174/187153006777442332.
Article
Google Scholar
Vincent JL, Taccone F, Schmit X: Classification, incidence, and outcomes of sepsis and multiple organ failure. Contrib Nephrol. 2007, 156: 64-74. 10.1159/000102071.
Article
Google Scholar
Jones AE, Brown MD, Trzeciak S, Shapiro NI, Garrett JS, Heffner AC, Kline JA: The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis. Crit Care Med. 2008, 36: 2734-2739. 10.1097/CCM.0b013e318186f839.
Article
Google Scholar
Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, Willemsen SP, Bakker J: Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010, 182: 752-761. 10.1164/rccm.200912-1918OC.
Article
Google Scholar
Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A: Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med. 2000, 28: 114-119. 10.1097/00003246-200001000-00019.
Article
Google Scholar
Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, Weiss JW: Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005, 45: 524-528. 10.1016/j.annemergmed.2004.12.006.
Article
Google Scholar
Nichol A, Bailey M, Egi M, Pettila V, French C, Stachowski E, Reade MC, Cooper DJ, Bellomo R: Dynamic lactate indices as predictors of outcome in critically ill patients. Crit Care. 2011, 15: R242-10.1186/cc10497.
Article
Google Scholar
Wong HR, Lindsell CJ, Pettila V, Meyer NJ, Thair SA, Karlsson S, Russell JA, Fjell CD, Boyd JH, Ruokonen E, Shashaty MG, Christie JD, Hart KW, Lahni P, Walley KR: A multibiomarker-based outcome risk stratification model for adult septic shock. Crit Care Med. 2014, 42: 781-789. 10.1097/CCM.0000000000000106.
Article
Google Scholar
Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, Davies A, Stachowski E, Reade MC, Bailey M, Cooper DJ: Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010, 14: R25-10.1186/cc8888.
Article
Google Scholar
Wacharasint P, Nakada TA, Boyd JH, Russell JA, Walley KR: Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock. 2012, 38: 4-10. 10.1097/SHK.0b013e318254d41a.
Article
Google Scholar
Sterling SA, Puskarich MA, Shapiro NI, Trzeciak S, Kline JA, Summers RL, Jones AE: Characteristics and outcomes of patients with vasoplegic versus tissue dysoxic septic shock. Shock. 2013, 40: 11-14. 10.1097/SHK.0b013e318298836d.
Article
Google Scholar
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013, 41: 580-637. 10.1097/CCM.0b013e31827e83af.
Article
Google Scholar
Connor H, Woods HF: Quantitative aspects of L(+)-lactate metabolism in human beings. Ciba Found Symp. 1982, 87: 214-234.
Google Scholar
Van Hall G: Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010, 199: 499-508. 10.1111/j.1748-1716.2010.02122.x.
Article
Google Scholar
Levraut J, Ciebiera JP, Jambou P, Ichai C, Labib Y, Grimaud D: Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med. 1997, 25: 58-62. 10.1097/00003246-199701000-00013.
Article
Google Scholar
Consoli A, Nurjhan N, Reilly JJ, Bier DM, Gerich JE: Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am J Physiol. 1990, 259: E677-E684.
Google Scholar
Kreisberg RA, Pennington LF, Boshell BR: Lactate turnover and gluconeogenesis in normal and obese humans. Effect of starvation. Diabetes. 1970, 19: 53-63.
Article
Google Scholar
Gerich JE, Meyer C, Woerle HJ, Stumvoll M: Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001, 24: 382-391. 10.2337/diacare.24.2.382.
Article
Google Scholar
Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI, Brooks GA: Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol. 2002, 544: 963-975. 10.1113/jphysiol.2002.027128.
Article
Google Scholar
Mazzeo RS, Brooks GA, Schoeller DA, Budinger TF: Disposal of blood [1-13C]lactate in humans during rest and exercise. J Appl Physiol. 1986, 60: 232-241.
Google Scholar
Jorfeldt L: Metabolism of L(plus)-lactate in human skeletal muscle during exercise. Acta Physiol Scand Suppl. 1970, 338: 1-67.
Google Scholar
van Hall G: Lactate as a fuel for mitochondrial respiration. Acta Physiol Scand. 2000, 168: 643-656. 10.1046/j.1365-201x.2000.00716.x.
Article
Google Scholar
Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G: Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol. 1988, 254: E555-E561.
Google Scholar
Hashimoto T, Hussien R, Brooks GA: Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab. 2006, 290: E1237-E1244. 10.1152/ajpendo.00594.2005.
Article
Google Scholar
Hashimoto T, Brooks GA: Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc. 2008, 40: 486-494. 10.1249/MSS.0b013e31815fcb04.
Article
Google Scholar
Brooks GA: Cell-cell and intracellular lactate shuttles. J Physiol. 2009, 587: 5591-5600. 10.1113/jphysiol.2009.178350.
Article
Google Scholar
Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA: Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007, 21: 2602-2612. 10.1096/fj.07-8174com.
Article
Google Scholar
Beadle RM, Frenneaux M: Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart. 2010, 96: 824-830. 10.1136/hrt.2009.190256.
Article
Google Scholar
Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA: Lactate improves cardiac efficiency after hemorrhagic shock. Shock. 2000, 14: 215-221. 10.1097/00024382-200014020-00023.
Article
Google Scholar
Stanley WC: Myocardial lactate metabolism during exercise. Med Sci Sports Exerc. 1991, 23: 920-924. 10.1249/00005768-199108000-00006.
Article
Google Scholar
Bergman BC, Tsvetkova T, Lowes B, Wolfel EE: Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol. 2009, 587: 2087-2099. 10.1113/jphysiol.2008.168286.
Article
Google Scholar
Nalos M, Leverve XM, Huang SJ, Weisbrodt L, Parkin R, Seppelt IM, Ting I, McLean AS: Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomized controlled clinical trial. Crit Care. 2014, 18: R48-10.1186/cc13793.
Article
Google Scholar
Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL: Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med. 2005, 33: 2235-2240. 10.1097/01.CCM.0000181525.99295.8F.
Article
Google Scholar
Barthelmes D, Jakob SM, Laitinen S, Rahikainen S, Ahonen H, Takala J: Effect of site of lactate infusion on regional lactate exchange in pigs. Br J Anaesth. 2010, 105: 627-634. 10.1093/bja/aeq214.
Article
Google Scholar
van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB: Blood lactate is an important energy source for the human brain. J Cerebr Blood Flow Metab. 2009, 29: 1121-1129. 10.1038/jcbfm.2009.35.
Article
Google Scholar
Dienel GA: Brain lactate metabolism: the discoveries and the controversies. J Cerebr Blood Flow Metab. 2012, 32: 1107-1138. 10.1038/jcbfm.2011.175.
Article
Google Scholar
Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B: In vivo evidence for lactate as a neuronal energy source. J Neurosci. 2011, 31: 7477-7485. 10.1523/JNEUROSCI.0415-11.2011.
Article
Google Scholar
Magistretti PJ: Neuron-glia metabolic coupling and plasticity. J Exp Biol. 2006, 209: 2304-2311. 10.1242/jeb.02208.
Article
Google Scholar
Huckabee WE: Abnormal resting blood lactate. I. The significance of hyperlactatemia in hospitalized patients. Am J Med. 1961, 30: 840-848. 10.1016/0002-9343(61)90172-3.
Article
Google Scholar
Weil MH, Afifi AA: Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation. 1970, 41: 989-1001. 10.1161/01.CIR.41.6.989.
Article
Google Scholar
Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC: Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004, 32: 1637-1642. 10.1097/01.CCM.0000132904.35713.A7.
Article
Google Scholar
Fuller BM, Dellinger RP: Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care. 2012, 18: 267-272. 10.1097/MCC.0b013e3283532b8a.
Article
Google Scholar
Boekstegers P, Weidenhofer S, Kapsner T, Werdan K: Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994, 22: 640-650. 10.1097/00003246-199404000-00021.
Article
Google Scholar
Sair M, Etherington PJ, Peter Winlove C, Evans TW: Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001, 29: 1343-1349. 10.1097/00003246-200107000-00008.
Article
Google Scholar
Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE: Relation between muscle Na?+?K?+?ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005, 365: 871-875. 10.1016/S0140-6736(05)71045-X.
Article
Google Scholar
VanderMeer TJ, Wang H, Fink MP: Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med. 1995, 23: 1217-1226. 10.1097/00003246-199507000-00011.
Article
Google Scholar
Rosser DM, Stidwill RP, Jacobson D, Singer M: Oxygen tension in the bladder epithelium rises in both high and low cardiac output endotoxemic sepsis. J Appl Physiol. 1995, 79: 1878-1882.
Google Scholar
Hotchkiss RS, Karl IE: Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA. 1992, 267: 1503-1510. 10.1001/jama.1992.03480110079038.
Article
Google Scholar
Regueira T, Djafarzadeh S, Brandt S, Gorrasi J, Borotto E, Porta F, Takala J, Bracht H, Shaw S, Lepper PM, Jakob SM: Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesth Scand. 2012, 56: 846-859. 10.1111/j.1399-6576.2012.02706.x.
Article
Google Scholar
Textoris J, Beaufils N, Quintana G, Ben Lassoued A, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M: Hypoxia-inducible factor (HIF1alpha) gene expression in human shock states. Crit Care. 2012, 16: R120-10.1186/cc11414.
Article
Google Scholar
Opdam H, Bellomo R: Oxygen consumption and lactate release by the lung after cardiopulmonary bypass and during septic shock. Crit Care Resusc. 2000, 2: 181-187.
Google Scholar
Gilles RJ, D'Orio V, Ciancabilla F, Carlier PG: In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study. Crit Care Med. 1994, 22: 499-505. 10.1097/00003246-199403000-00022.
Article
Google Scholar
Alamdari N, Constantin-Teodosiu D, Murton AJ, Gardiner SM, Bennett T, Layfield R, Greenhaff PL: Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats. J Physiol. 2008, 586: 1767-1775. 10.1113/jphysiol.2007.149625.
Article
Google Scholar
Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M: Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002, 360: 219-223. 10.1016/S0140-6736(02)09459-X.
Article
Google Scholar
Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR: Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol. 1989, 257: E323-E331.
Google Scholar
Stacpoole PW, Nagaraja NV, Hutson AD: Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol. 2003, 43: 683-691. 10.1177/0091270003254637.
Article
Google Scholar
Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR: Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993, 270: 1724-1730. 10.1001/jama.1993.03510140084034.
Article
Google Scholar
Ronco JJ, Fenwick JC, Wiggs BR, Phang PT, Russell JA, Tweeddale MG: Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis. 1993, 147: 25-31. 10.1164/ajrccm/147.1.25.
Article
Google Scholar
Mira JP, Fabre JE, Baigorri F, Coste J, Annat G, Artigas A, Nitenberg G, Dhainaut JF: Lack of oxygen supply dependency in patients with severe sepsis. A study of oxygen delivery increased by military antishock trouser and dobutamine. Chest. 1994, 106: 1524-1531. 10.1378/chest.106.5.1524.
Article
Google Scholar
Astiz ME, Rackow EC, Kaufman B, Falk JL, Weil MH: Relationship of oxygen delivery and mixed venous oxygenation to lactic acidosis in patients with sepsis and acute myocardial infarction. Crit Care Med. 1988, 16: 655-658. 10.1097/00003246-198807000-00001.
Article
Google Scholar
Uehara M, Plank LD, Hill GL: Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999, 27: 1295-1302. 10.1097/00003246-199907000-00015.
Article
Google Scholar
Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H: Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med. 1993, 21: 1012-1019. 10.1097/00003246-199307000-00015.
Article
Google Scholar
Subramaniam A, McPhee M, Nagappan R: Predicting energy expenditure in sepsis: Harris-Benedict and Schofield equations versus the Weir derivation. Crit Care Resusc. 2012, 14: 202-210.
Google Scholar
Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D: Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994, 330: 1717-1722. 10.1056/NEJM199406163302404.
Article
Google Scholar
Marik PE, Sibbald WJ: Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993, 269: 3024-3029. 10.1001/jama.1993.03500230106037.
Article
Google Scholar
Cortez DO, Taccone FS, Vincent JL: Short acting beta-blocker administration in patients with septic shock. JAMA. 2014, 311: 735-736. 10.1001/jama.2014.324.
Article
Google Scholar
Levy B: Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006, 12: 315-321. 10.1097/01.ccx.0000235208.77450.15.
Article
Google Scholar
James JH, Luchette FA, McCarter FD, Fischer JE: Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999, 354: 505-508. 10.1016/S0140-6736(98)91132-1.
Article
Google Scholar
Bundgaard H, Kjeldsen K, Suarez Krabbe K, van Hall G, Simonsen L, Qvist J, Hansen CM, Moller K, Fonsmark L, Lav Madsen P, Klarlund Pedersen B: Endotoxemia stimulates skeletal muscle Na?+?-K?+?-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol. 2003, 284: H1028-H1034.
Article
Google Scholar
Levy B, Mansart A, Montemont C, Gibot S, Mallie JP, Regnault V, Lecompte T, Lacolley P: Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med. 2007, 33: 495-502. 10.1007/s00134-006-0523-9.
Article
Google Scholar
Wutrich Y, Barraud D, Conrad M, Cravoisy-Popovic A, Nace L, Bollaert PE, Levy B, Gibot S: Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock. 2010, 34: 4-9. 10.1097/SHK.0b013e3181ce2d23.
Article
Google Scholar
Bellomo R, Kellum JA, Pinsky MR: Transvisceral lactate fluxes during early endotoxemia. Chest. 1996, 110: 198-204. 10.1378/chest.110.1.198.
Article
Google Scholar
Johnson ML, Emhoff CA, Horning MA, Brooks GA: Transpulmonary lactate shuttle. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R143-R149. 10.1152/ajpregu.00402.2011.
Article
Google Scholar
De Backer D, Creteur J, Silva E, Vincent JL: The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med. 2001, 29: 256-261. 10.1097/00003246-200102000-00005.
Article
Google Scholar
Glassford NJ, Farley KJ, Warrillow S, Bellomo R: Liver transplantation rapidly stops cerebral ammonia uptake in fulminant hepatic failure. Crit Care Resusc. 2011, 13: 113-118.
Google Scholar
Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA: Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010, 303: 739-746. 10.1001/jama.2010.158.
Article
Google Scholar
Astiz ME, Rackow EC, Falk JL, Kaufman BS, Weil MH: Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med. 1987, 15: 26-28. 10.1097/00003246-198701000-00005.
Article
Google Scholar
Silance PG, Vincent JL: Oxygen extraction in patients with sepsis and heart failure: another look at clinical studies. Clin Intensive Care. 1994, 5: 4-14.
Google Scholar
Friedman G, De Backer D, Shahla M, Vincent JL: Oxygen supply dependency can characterize septic shock. Intensive Care Med. 1998, 24: 118-123. 10.1007/s001340050531.
Article
Google Scholar
Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, Donadello K, Dewitte O, Vincent JL, De Backer D: Sepsis is associated with altered cerbral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. 2014, 42: e114-e122. 10.1097/CCM.0b013e3182a641b8.
Article
Google Scholar
Rimachi R, Bruzzi de Carvahlo F, Orellano-Jimenez C, Cotton F, Vincent JL, DeBacker D: Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care. 2012, 40: 427-432.
Google Scholar
DeBacker D, Creteur J, Noordally O, Samil N, Gulbis B, Vincent JL: Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients?. Am J Respir Crit Care Med. 1998, 157: 1219-1225. 10.1164/ajrccm.157.4.9705075.
Article
Google Scholar
Hernandez G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, Ruiz C, Castro R, Pozo MO, Pedreros C, Veas E, Fuentealba A, Kattan E, Rovegno M, Ince C: Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients.J Crit Care 2013, 28. 538.e9-14.,
Ince C: The microcirculation in the motor of sepsis. Crit Care. 2005, 9 (Suppl 4): S13-S19. 10.1186/cc3753.
Article
Google Scholar
Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R: Effect of a maldistribution of microvascular blood flow on capillary O2extraction in sepsis.Am J Physiol Heart Circ Physiol 2002, 282:H156-H164.,