Skip to main content

Impact of open lung ventilation on right ventricular outflow impedance assessed by transoesophageal echocardiography


Open lung concept ventilation is a method of ventilation intended to maintain end-expiratory lung volume by increased airway pressure [1]. Since this could increase right ventricular (RV) afterload, we investigated the effect of this method on RV outflow impedance during inspiration and expiration using transoesophageal echo-Doppler in a trial to differentiate the RV consequence of increasing lung volume from those secondary to increasing airway pressure during mechanical ventilation.


Thirty stable patients on MV because of different causes were enrolled prospectively in this single-center, cross-sectional clinical study. Each patient was firstly subjected to conventional ventilation (CV) with volume-controlled ventilation, followed by OLC ventilation by switching to a pressure-controlled mode, then a recruitment maneuver applied until PaO2/FiO2 > 375 torr. Hemodynamic (MAP, CVP and HR) and respiratory (peak, plateau and mean airway pressure and total and dynamic lung compliance) measurements were recorded before, 20 minutes after a steady state of both CV and 20 OLC ventilation. Also, transoesophageal ECHO Doppler was performed at the end of inspiration and end of expiration to calculate the mean acceleration (ACmean), as a marker of the RV outflow impedance, 20 minutes after a steady state of both CV and OLC ventilation.


During inspiration, ACmean was significantly lower during CV compared with OLC ventilation (P < 0.001). Inspiration did not cause a significant decrease in ACmean compared with expiration during OLV (P < 0.001) but did do so during CV. In comparison with baseline and CV, OLC ventilation was associated with a statistically significant higher CVP (P < 0.001 for both), higher total quasi-static lung compliance (P < 0.001 for both) and dynamic lung compliance (P = 0.001 for both). Moreover, the PaO2/FiO2 ratio of OLV was significantly higher than in baseline and CV (P < 0.001 for both).


OLC ventilation does not change RV afterload during inspiration and expiration as RV afterload appears primarily mediated through the tidal volume. Moreover, OLC ventilation provides a more stable hemodynamic condition and better oxygenation and lung dynamics.


  1. Hartog A, Vazquez de Anda G, et al.: At surfactant deficiency, application of 'the open lung concept' prevents protein leakage and attenuates changes in lung mechanics. Crit Care Med 2000, 28: 1450-1454. 10.1097/00003246-200005000-00032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Cite this article

Salah, S., El-Akabawy, H. Impact of open lung ventilation on right ventricular outflow impedance assessed by transoesophageal echocardiography. Crit Care 15 (Suppl 1), P172 (2011).

Download citation

  • Published:

  • DOI:


  • Right Ventricular
  • Recruitment Maneuver
  • Conventional Ventilation
  • Transoesophageal Echocardiography
  • Right Ventricular Afterload