- Poster presentation
- Published:
A comparison in cardiac output data: a random effects model for repeated measures
Critical Care volume 14, Article number: P107 (2010)
Introduction
A random effects model can be used to estimate the within-subject variation after accounting for other observed and unobserved variations, in which each subject has a different intercept and slope over the observation period. On the basis of the within-subject variance estimated by the random effects model, Bland-Altman plots can be created.
Methods
In 28 cardiac surgery patients, cardiac output data LiDCO™plus, PICCO, FloTrac/Vigileo pulse contour and CCO (PAC-Vigilance) was collected at 1 hour (T1), 2 hours (T2), 4 hours (T3), 8 hours (T4), 12 hours (T5), 24 hours (T6), 36 hours (T7), and 48 hours (T8) after ICU admission and compared against intermitted thermodilution COtd (ICO). Within patient variation was calculated using Linear Mixed Models (SPSS). Percentage error is calculated as: PE = [(2.SD of CO difference)/(COmean)] × 100%.
Results
The results of the random effects model on continuous cardiac output data are presented in Figure 1.
Conclusions
The variation of the differences of the original measurement will be underestimated by this practice because the measurement error is, to some extent, removed. The bias between these two methods will not be affected by averaging the repeated measurements.
References
Myles PS, Cui J: Br J Anaesthesia. 2007, 99: 309-311. 10.1093/bja/aem214.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
De Wilde, R., Geerts, B., Berg, P.V.d. et al. A comparison in cardiac output data: a random effects model for repeated measures. Crit Care 14 (Suppl 1), P107 (2010). https://doi.org/10.1186/cc8339
Published:
DOI: https://doi.org/10.1186/cc8339