Esteban A, Frutos F, Tobin MJ, et al: A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med. 1995, 332: 345-350. 10.1056/NEJM199502093320601.
Article
CAS
PubMed
Google Scholar
Brochard L, Rauss A, Benito S, et al: Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994, 150: 896-903.
Article
CAS
PubMed
Google Scholar
Esteban A, Alía I, Gordo F, et al: Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. Am J Respir Crit Care Med. 1997, 156: 459-465.
Article
CAS
PubMed
Google Scholar
Ely EW, Baker AM, Dunagan DP, et al: Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996, 335: 1864-1869. 10.1056/NEJM199612193352502.
Article
CAS
PubMed
Google Scholar
Esteban A, Alía I, Tobin MJ, et al: Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med. 1999, 159: 512-518.
Article
CAS
PubMed
Google Scholar
Yang KL, Tobin MJ: A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991, 324: 1445-1450.
Article
CAS
PubMed
Google Scholar
Sassoon CSH, Mahutte CK: Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis. 1993, 148: 860-866.
Article
CAS
PubMed
Google Scholar
Jabour ER, Rabil DM, Truwit JD, Rochester DF: Evaluation of a new weaning index based on ventilatory endurance and the efficiency of gas exchange. Am Rev Respir Dis. 1991, 144: 531-537.
Article
CAS
PubMed
Google Scholar
Levy MM, Miyasaki A, Langston D: Work of breathing as a weaning parameter in mechanically ventilated patients. Chest. 1995, 108: 1018-1020.
Article
CAS
PubMed
Google Scholar
Chatila W, Jacob B, Guaglionone D, Manthous CA: The unassisted respiratory rate-tidal volume ratio accurately predicts weaning outcome. Am J Med. 1996, 101: 61-67. 10.1016/S0002-9343(96)00064-2.
Article
CAS
PubMed
Google Scholar
Jacob B, Chatila W, Manthous CA: The unassisted respiratory rate/tidal volume ratio accurately predicts weaning outcome in postoperative patients. Crit Care Med. 1997, 25: 253-257. 10.1097/00003246-199702000-00010.
Article
CAS
PubMed
Google Scholar
Krieger BP, Isber J, Breitenbucher A, Throop G, Ershowsky P: Serial measurements of the rapid-shallow-breathing index as a predictor of weaning outcome in elderly medical patients. Chest . 1997, 112: 1029-1034.
Article
CAS
PubMed
Google Scholar
Jaeschke R, Guyatt GH, Sackett DL: How to use an article about a diagnostic test. What are the results and will they help me in caring from my patient?. JAMA. 1994, 271: 703-707. 10.1001/jama.271.9.703.
Article
CAS
PubMed
Google Scholar
Reyes A, Vega G, Blancas R, et al: Early vs conventional extubation after cardiac surgery with cardiopulmonary bypass. Chest. 1997, 112: 193-201.
Article
CAS
PubMed
Google Scholar
Vallverdú I, Calaf N, Subirana M, et al: Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med. 1998, 158: 1855-1862.
Article
PubMed
Google Scholar
Jones DP, Byrne P, Morgan C, Fraser I, Hyland R: Positive end-expiratory pressure vs T-piece. Extubation after mechanical ventilation. Chest. 1991, 100: 1655-1659.
Article
CAS
PubMed
Google Scholar
Petrof BJ, Legaré M, Goldberg P, Milic-Emili J, Gottfried SB: Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990, 141: 281-289.
Article
CAS
PubMed
Google Scholar
MacIntyre NR, Cheng KC, McConnell R: Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997, 111: 188-193.
Article
CAS
PubMed
Google Scholar
Sydow M, Golisch W, Buscher H, et al: Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intens Care Med. 1995, 21: 887-895.
Article
CAS
Google Scholar
Ranieri VM, Guliani R, Cinnella G, et al: Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis. 1993, 147: 5-13.
Article
CAS
PubMed
Google Scholar
Cohen CA, Zagelbaum C, Gross D, Roussos Ch, Macklem PT: Clinical manifestation of inspiratory muscle fatigue. Am J Med. 1982, 73: 308-316. 10.1016/0002-9343(82)90707-0.
Article
CAS
PubMed
Google Scholar
Brochard L, Harf A, Lorino H, Lemaire F: Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989, 139: 513-521.
Article
CAS
PubMed
Google Scholar
Laghi F, D'Alfonso N, Tobin MJ: Pattern of recovery from diaphragmatic fatigue over 24 hours. J Appl Physiol. 1995, 79: 539-546.
CAS
PubMed
Google Scholar
Slutsky AS: ACCP Consensus Conference: mechanical ventilation. Chest. 1993, 104: 1833-1859.
Article
CAS
PubMed
Google Scholar
Marini J, Rodriguez R, Lamb V: The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis. 1986, 134: 902-909.
Article
CAS
PubMed
Google Scholar
Bonmarchand G, Chevron V, Chopin C, et al: Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intens Care Med. 1996, 22: 1147-1154. 10.1007/s001340050230.
Article
CAS
Google Scholar
Sassoon CSH, Del Rosario N, Fei R, et al: Influence of pressure and flow-triggered synchronous intermittent mandatory ventilation on inspiratory muscles work. Crit Care Med. 1994, 22: 1933-1941.
Article
CAS
PubMed
Google Scholar
Sassoon CSH, Lodia R, Rheeman CH, et al: Inspiratory muscle work of breathing during flow-by, demand-flow and continuous flow systems in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1992, 145: 1219-1222.
Article
CAS
PubMed
Google Scholar
Jager K, Tweeddale M, Holland T: Flow-triggering does not decrease the work of breathing and pressure-time product in COPD patients. Respir Care. 1994, 39: 892-896.
Google Scholar
Tütüncü AS, Cakar N, Camci E, et al: Comparison of pressure- and flow-triggered pressure-support ventilation on weaning parameters in patients recovering from acute respiratory failure. Crit Care Med. 1997, 25: 756-760. 10.1097/00003246-199705000-00008.
Article
PubMed
Google Scholar
Le Bourdellès G, Mier L, Fiquet B, et al: Comparison of the effects of heat and moisture exchangers and heated humidifiers on ventilation and gas exchange during weaning trials from mechanical ventilation. Chest. 1996, 110: 1294-1298.
Article
PubMed
Google Scholar
Iotti GA, Olivei MC, Palo A, et al: Unfavorable mechanical effects of heat and moisture exchangers in ventilated patients. Intens Care Med. 1997, 23: 399-405. 10.1007/s001340050347.
Article
CAS
Google Scholar
Nava S, Ambrosino N, Clini E, et al: Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. Ann Intern Med. 1998, 128: 721-728.
Article
CAS
PubMed
Google Scholar
Girault C, Daudenthun I, Chevron V, et al: Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure. A prospective, randomized controlled study. Am J Respir Crit Care Med. 1999, 160: 86-92.
Article
CAS
PubMed
Google Scholar
Jiang JS, Kao SJ, Wang SN: Effect of early application of biphasic airway pressure on the outcome of extubation in ventilator weaning. Respirology. 1999, 4: 161-165. 10.1046/j.1440-1843.1999.00168.x.
Article
CAS
PubMed
Google Scholar
Cook DJ, Guyatt GH, Laupacis A, Sackett DL: Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1992, 102 (suppl 4): 305S-311S.
Google Scholar
Comments
View archived comments (1)