Skip to main content

Assisted spontaneous breathing during early acute lung injury


In the early phase of their disease process, patients with acute lung injury are often ventilated with strategies that control the tidal volume or airway pressure, while modes employing spontaneous breathing are applied later to wean the patient from the ventilator. Spontaneous breathing modes may integrate intrinsic feedback mechanisms that should help prevent ventilator-induced lung injury, and should improve synchrony between the ventilator and the patient's demand. Airway pressure release ventilation with spontaneous breathing was shown to decrease cyclic collapse/recruitment of dependent, juxtadiaphragmatic lung areas compared with airway pressure release ventilation without spontaneous breathing. Combined with previous data demonstrating improved cardiorespiratory variables, airway pressure release ventilation with spontaneous breathing may turn out to be a less injurious ventilatory strategy.

Patients with acute lung injury (ALI) or its most severe form, acute respiratory distress syndrome (ARDS), usually require mechanical ventilation. The goals of mechanical ventilation are to decrease the oxygen costs of breathing and to improve gas exchange while minimizing iatrogenic lung injury – so-called ventilator-induced lung injury (VILI). Patients with ALI/ARDS are often ventilated with ventilatory modes and strategies that control the tidal volume or airway pressure in the early phase of the disease process, while modes using assisted spontaneous breathing (SB) are often applied later to facilitate weaning the patient from the ventilator.

The rationale underlying this approach is supported by studies showing that employing controlled mechanical ventilation with low tidal volumes, with limited airway pressures, and with positive end-expiratory pressure (PEEP) attenuates VILI [1] and decreases nonpulmonary organ dysfunction [2, 3] and mortality in patients with ALI/ARDS [3]. In a recent survey of clinical practice in 361 intensive care units, Esteban and colleagues found that only about 15% of patients with ARDS were ventilated with a SB mode in the first days [4].

It has been suggested that ventilatory modes in which patients breathe spontaneously early in the course of the ALI process might have advantages such as improved pulmonary ventilation/perfusion (V/Q) matching, increased blood oxygenation, preserved cardiac function, reduced need for excessive sedation, and prevention of ventilation-associated respiratory muscle dysfunction [515].

Adaptation of patients to controlled mechanical ventilation often requires deep sedation and occasionally muscle paralysis. Assisted SB is based on the hypothesis that integration rather than abolition of physiological feedback and intrinsic defence mechanisms, such as the Hering–Breuer reflex [16], should help prevent VILI, and should better account for the typically rapid changes in lung mechanics and metabolic demands in ALI/ARDS patients than 'caregiver'-controlled mechanical ventilation. Little is known to date, however, about the patient's intrinsic breathing pattern and response to lung collapse, alveolar oedema, and consolidation during ALI/ARDS. Ma and colleagues showed that reflex loops regulating both end-inspiratory and end-expiratory lung volumes are still functional and might help protect the lungs from overdistension and collapse even when lung compliance is decreased [17].

Airway pressure release ventilation (APRV) is a mode of mechanical ventilation introduced by Stock and Downs to improve oxygenation during SB [18]. With APRV the pressure in the ventilator circuit is periodically changed between a high level and a lower level, and SB is allowed in any phase of the cycle. The high and low pressure levels, the rate of change between the two levels, the respiratory system compliance, and the airway resistance to flow are the main determinants of the 'mechanical ventilation' portion with APRV, while the complementary 'SB' portion mainly depends on the patient's respiratory drive. In contrast to continuous positive airway pressure (CPAP), APRV interrupts the airway pressure briefly to augment spontaneous minute ventilation – thereby increasing alveolar ventilation and CO2 removal without increasing the work of breathing. SB efforts during APRV are not actively assisted except for those breaths that happen to occur during the change from the lower pressure level to the upper pressure level. Total minute ventilation with APRV is the sum of the mechanical, pressure-controlled ventilation and the complementary SB. APRV without SB is equal to pressure-controlled ventilation.

In a previous issue of Critical Care, Wrigge and colleagues report the effect of APRV with and without SB on lung aeration, on ventilation distribution, and on tidal lung collapse and recruitment assessed by dynamic computed tomography in pigs with oleic-acid-induced ALI [19]. APRV with SB as compared with APRV without SB resulted in increased aeration and ventilation, and in less cyclic collapse/recruitment of dependent, juxtadiaphragmatic lung areas. This study extends previous observations that maintaining SB during mechanical ventilation prevents formation of lung atelectasis [7], and thereby improves the V/Q match in the lungs [9].

Wrigge and colleagues used a uniform, relatively low level of PEEP in all animals, noting that application of higher PEEP levels might have better restored the end-expiratory lung volume and might have reduced cyclic alveolar collapse during APRV without SB. Indeed, application of a preset, uniform PEEP level in subjects with ALI/ARDS does not take into account individual physiologic responses and might therefore lead to alveolar recruitment and putative benefits in some patients, while in other patients recruitment may not occur and there may only be adverse effects [20].

Assisted SB and synchrony to the patient's demand

Assisted SB should ideally be in synchrony and in proportion to the patient's demand, and should unload respiratory muscles and reduce the patient's work required to inflate the lungs. The measurement of the patient's respiratory demand and monitoring the interaction between the ventilator and patient is not straightforward, however. The airway pressure and flow tracings have important limitations for the detection of SB efforts, and although monitoring of oesophageal pressure changes is more eliable it is only rarely used in clinical practice. Detection of the diaphragm electrical activity, which most directly represents the neural output to the respiratory system, potentially offers advantages for monitoring the patient's respiratory demand but is not yet commercially available [21]. Ventilator parameters for assisted SB such as assistance levels, trigger sensitivity, and criteria to terminate inspiratory gas flow (cycling-off criteria) are chosen mainly based on clinical assessment, on assumptions, and on algorithms.

The work of breathing is shared between the patient and the ventilator during assisted SB. The work of breathing encompasses the force required to overcome the resistance of the airways to airflow as well as the elastic recoil of the lungs and the chest wall. In patients with reduced lung compliance, such as those with ALI/ARDS, inspiration requires considerable respiratory work, especially at low lung volumes [22]. With application of CPAP or PEEP the lung is prevented from collapsing, and inspiration begins from a more favourable point on the pressure–volume curve (i.e. less work is required to expand the lungs). This is also the case during the high pressure level with APRV. Indeed, CPAP titrated individually has been shown to increase lung compliance and to reduce the work of breathing in patients with ALI [23].

Patient–ventilator asynchrony is common, can result in increased inspiratory and expiratory muscle activity [24], and is normally resolved clinically by either adapting ventilator settings, increasing sedation levels, or both [25]. Matching the assistance delivered by the ventilator with the patient's demand is challenging. None of the currently used SB modes is exempt from patient–ventilator asynchrony, especially when assistance levels are high [26, 27]. Increasing sedation levels can result in respiratory muscle unloading but can also result in a monotonous breathing pattern, which may blunt the advantages anticipated from maintained respiratory muscle activity [28]. If the levels of CPAP or PEEP, the settings to trigger and cycle-off the ventilator, and the level of assistance delivered do not meet the patient's demand, the oxygen cost and the work of breathing may actually increase [29].

Wrigge and colleagues used APRV, a ventilatory mode which entails several interesting concepts. First, APRV overcomes shortcomings related to triggering and cycling-off the ventilator typically inherent to modes of assisted SB, by simply avoiding the inspiratory and expiratory valves in the ventilator circuit [18]. This allows the patient to breathe unhindered. The time-cycled release of airway pressure is not synchronized to the patient's breathing efforts, however, and may therefore result in cyclic recurrent patient–ventilator asynchrony. Second, the application of CPAP recruits some atelectatic areas, increases the lung volume, and allows SB to occur on a portion of the pressure–volume curve where impedance to airflow is low and only a small transpulmonary pressure change is required to produce the tidal volume. Finally, APRV maintains airway pressures at high levels for a prolonged time. As alveoli are continually recruited along the inspiratory limb of the pressure–volume curve and not just below the lower inflection point, as was previously assumed [30], the recruitment of alveoli is likely to be more efficient with APRV than with a shorter application of positive pressure (e.g. as with pressure support ventilation).

Assisted SB, ventilation/perfusion matching, and cardiac output

ARDS causes alveolar collapse primarily in dependent lung regions adjacent to the diaphragm, resulting in a venous admixture (V/Q mismatch) and arterial hypoxemia [31]. In a classic article, Froese and Bryan demonstrated that SB in subjects in the supine position results in more marked movement of the posterior diaphragm as compared with the ventral tendon plate [7]. This was associated with increased ventilation of the dependent, usually well-perfused, parts of the lung, whereas during controlled ventilation air was preferentially distributed to the nondependent, less well-perfused, parts of the lungs. Ventilation of a larger share of the lung along with an increase in blood flow to previously minimal or nonperfused areas may help convert shunt units to units with a normal V/Q distribution.

Continuous positive pressure ventilation and PEEP help to improve arterial oxygenation but also affect the intrathoracic to extrathoracic vascular pressure gradients, such that return of blood flow to the right ventricle is impaired and pulmonary vascular impedance is increased (at least with high PEEP levels), resulting in enhanced right ventricular afterload. The combination of both mechanisms is believed to represent the major determinants of the depression of cardiac output during mechanical ventilation [32]. Periodic reduction of intrathoracic pressure combined with compression of intraabdominal vascular beds during SB facilitates venous return to the heart [5] and is associated with decreased pulmonary vascular resistance [10, 32]. Increased cardiac output has been found in some [5, 6, 811], but not all [14, 15, 33], studies evaluating SB in patients with ALI/ARDS. Furthermore, SB in patients with ALI/ARDS was associated with an increase in kidney perfusion, glomerular filtration rate and sodium excretion [8, 34], and splanchnic perfusion [35] when compared with controlled mechanical ventilation.

Theoretically, the increase in cardiac output and arterial oxygen content (increased global oxygen delivery) associated with SB during ALI/ARDS may be counterbalanced by an increase in global oxygen demand resulting from the activation of the respiratory muscles during SB efforts. The total oxygen consumption was not measurably altered, however, and the mixed venous oxygen content was higher during SB in a number of studies [10, 11, 14, 3638] when compared with controlled-mode mechanical ventilation. The global tissue oxygen supply was consequently increased.

Implication of the present study

The current study by Wrigge and colleagues suggests another nonhaemodynamic, nongas-exchange-related potential advantage of SB with APRV over controlled ventilation. Wrigge and colleagues demonstrate that APRV with SB led to improved tidal ventilation of dependent juxtadiaphragmatic lung regions, and most importantly led to less cyclic lung collapse. Why might this be important? A number of studies have demonstrated that cyclic lung collapse can lead to increased VILI, manifested by morphologic [39] and biochemical changes such as release of mediators into the lung [1] and into the circulation [40]. This mechanism may explain the development of multiple organ dysfunction syndrome [41].

The study by Wrigge and colleagues was not designed to assess parameters of VILI, so we do not know for sure whether this occurred. Nonetheless, the decreased lung collapse/reopening of the lung suggests that APRV with SB may mitigate VILI and potentially improve outcomes in ALI/ARDS.

Only a few studies have assessed SB in patients with ALI [11, 14, 15, 33, 42]. Most of these studies have demonstrated beneficial effects of maintained SB on arterial oxygenation, intrapulmonary V/Q matching, changes in haemodynamics, global oxygen transport, and prevention of excessive sedation. But the use of such surrogate physiological endpoints may not tell us whether a specific mode of ventilation is indeed more appropriate for our patients. For example, in the ARDSNet trial that demonstrated a significant decrease in mortality in patients ventilated with 6 ml/kg compared with 12 ml/kg, patients in the 6 ml/kg arm had worse oxygenation in the first 24 hours compared with the larger tidal volume group.

Given the demonstrated beneficial cardiorespiratory effects of maintaining SB in patients with ALI, and the observed potential benefits in terms of decreased VILI in an animal model, it may be time to consider a controlled trial of a mode such as APRV with SB to improve clinically important outcomes in patients with ALI/ARDS.



= acute lung injury


= airway pressure release ventilation


= acute respiratory distress syndrome


= continuous positive airway pressure


= positive end-expiratory pressure


= spontaneous breathing


= ventilator-associated lung injury


= ventilation/perfusion.


  1. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS: Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997, 99: 944-952.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. Ranieri VM, Giunta F, Suter PM, Slutsky AS: Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000, 284: 43-44. 10.1001/jama.284.1.43

    CAS  Article  PubMed  Google Scholar 

  3. The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000, 342: 1301-1308. 10.1056/NEJM200005043421801

    Article  Google Scholar 

  4. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguia C, Nightingale P, et al.: Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002, 287: 345-355. 10.1001/jama.287.3.345

    Article  PubMed  Google Scholar 

  5. Downs JB, Douglas ME, Sanfelippo PM, Stanford W, Hodges MR: Ventilatory pattern, intrapleural pressure, and cardiac output. Anesth Analg 1977, 56: 88-96. 10.1213/00000539-197701000-00021

    CAS  Article  PubMed  Google Scholar 

  6. Falkenhain SK, Reilley TE, Gregory JS: Improvement in cardiac output during airway pressure release ventilation. Crit Care Med 1992, 20: 1358-1360.

    CAS  Article  PubMed  Google Scholar 

  7. Froese AB, Bryan AC: Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 1974, 41: 242-255.

    CAS  Article  PubMed  Google Scholar 

  8. Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C: Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 2002, 28: 1426-1433. 10.1007/s00134-002-1442-z

    Article  PubMed  Google Scholar 

  9. Putensen C, Rasanen J, Lopez FA: Ventilation–perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med 1994, 150: 101-108.

    CAS  Article  PubMed  Google Scholar 

  10. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J: Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999, 159: 1241-1248.

    CAS  Article  PubMed  Google Scholar 

  11. Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, von Spiegel T, Mutz N: Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001, 164: 43-49.

    CAS  Article  PubMed  Google Scholar 

  12. Rathgeber J, Schorn B, Falk V, Kazmaier S, Spiegel T, Burchardi H: The influence of controlled mandatory ventilation (CMV), intermittent mandatory ventilation (IMV) and biphasic intermittent positive airway pressure (BIPAP) on duration of intubation and consumption of analgesics and sedatives. A prospective analysis in 596 patients following adult cardiac surgery. Eur J Anaesthesiol 1997, 14: 576-582. 10.1046/j.1365-2346.1994.00178.x

    CAS  Article  PubMed  Google Scholar 

  13. Sassoon CS, Zhu E, Caiozzo VJ: Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004, 170: 626-632. 10.1164/rccm.200401-042OC

    Article  PubMed  Google Scholar 

  14. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA: Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio ventilation. Am J Respir Crit Care Med 1994, 149: 1550-1556.

    CAS  Article  PubMed  Google Scholar 

  15. Tejeda M, Boix JH, Alvarez F, Balanza R, Morales M: Comparison of pressure support ventilation and assist-control ventilation in the treatment of respiratory failure. Chest 1997, 111: 1322-1325.

    CAS  Article  PubMed  Google Scholar 

  16. Hering E, Breuer J: Die Selbststeurung der athmung durch den nervus vagus. Sitzber Deut Akad Wiss Wein 1868, 57: 672-677.

    Google Scholar 

  17. Ma A, Bravo M, Kappagoda CT: Responses of bronchial C-fiber afferents of the rabbit to changes in lung compliance. Respir Physiol Neurobiol 2003, 138: 155-163. 10.1016/S1569-9048(03)00189-7

    Article  PubMed  Google Scholar 

  18. Stock MC, Downs JB, Frolicher DA: Airway pressure release ventilation. Crit Care Med 1987, 15: 462-466.

    CAS  Article  PubMed  Google Scholar 

  19. Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G: Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters alveolar collapse in oleic acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 2005, 9: R780-R789. 10.1186/cc3908

    PubMed Central  Article  PubMed  Google Scholar 

  20. Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, Fiore T: Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005, 171: 1002-1008. 10.1164/rccm.200407-940OC

    Article  PubMed  Google Scholar 

  21. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L: Neural control of mechanical ventilation in respiratory failure. Nat Med 1999, 5: 1433-1436. 10.1038/71012

    CAS  Article  PubMed  Google Scholar 

  22. Grinnan DC, Truwit JD: Clinical review: respiratory mechanics in spontaneous and assisted ventilation. Crit Care 2005, 9: 472-484. 10.1186/cc3516

    PubMed Central  Article  PubMed  Google Scholar 

  23. Katz JA, Marks JD: Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure. Anesthesiology 1985, 63: 598-607.

    CAS  Article  PubMed  Google Scholar 

  24. Parthasarathy S, Jubran A, Tobin MJ: Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998, 158: 1471-1478.

    CAS  Article  PubMed  Google Scholar 

  25. Burchardi H: Aims of sedation/analgesia. Minerva Anestesiol 2004, 70: 137-143.

    CAS  PubMed  Google Scholar 

  26. Beck J, Gottfried SB, Navalesi P, Skrobik Y, Comtois N, Rossini M, Sinderby C: Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 2001, 164: 419-424.

    CAS  Article  PubMed  Google Scholar 

  27. Leung P, Jubran A, Tobin MJ: Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 1997, 155: 1940-1948.

    CAS  Article  PubMed  Google Scholar 

  28. Grasso S, Fanelli V, Cafarelli A, Dalfino L, Ingenito G, Ancona G, Fiore T: Patient ventilator interaction during PSV at different levels of sedation in ALI patients [abstract]. Intensive Care Med 2004,30(Suppl 1):S13.

    Google Scholar 

  29. Marini JJ, Capps JS, Culver BH: The inspiratory work of breathing during assisted mechanical ventilation. Chest 1985, 87: 612-618.

    CAS  Article  PubMed  Google Scholar 

  30. Hickling KG: The pressure–volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 1998, 158: 194-202.

    CAS  Article  PubMed  Google Scholar 

  31. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M: Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 1994, 271: 1772-1779. 10.1001/jama.271.22.1772

    CAS  Article  PubMed  Google Scholar 

  32. Pinsky MR: Recent advances in the clinical application of heart–lung interactions. Curr Opin Crit Care 2002, 8: 26-31. 10.1097/00075198-200202000-00005

    Article  PubMed  Google Scholar 

  33. Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A: Pressure support ventilation in patients with acute lung injury. Crit Care Med 2000, 28: 1269-1275. 10.1097/00003246-200005000-00002

    CAS  Article  PubMed  Google Scholar 

  34. Steinhoff H, Falke K, Schwarzhoff W: Enhanced renal function associated with intermittent mandatory ventilation in acute respiratory failure. Intensive Care Med 1982, 8: 69-74. 10.1007/BF01694869

    CAS  Article  PubMed  Google Scholar 

  35. Hering R, Viehofer A, Zinserling J, Wrigge H, Kreyer S, Berg A, Minor T, Putensen C: Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology 2003, 99: 1137-1144. 10.1097/00000542-200311000-00021

    Article  PubMed  Google Scholar 

  36. Rasanen J, Puhakka K, Leijala M: Spontaneous breathing and total body oxygen consumption in children recovering from open-heart surgery. Chest 1992, 101: 662-667.

    CAS  Article  PubMed  Google Scholar 

  37. Stock MC, Downs JB, Betts RK, Frolicher DA, Howie MB, Tallman RD: Oxygen consumption during spontaneous ventilation with acute lung injury in anesthetized pigs. Am Rev Respir Dis 1988, 137: 790-795.

    CAS  Article  PubMed  Google Scholar 

  38. Wolff G, Brunner JX, Gradel E: Gas exchange during mechanical ventilation and spontaneous breathing. Intermittent mandatory ventilation after open heart surgery. Chest 1986, 90: 11-17.

    CAS  Article  PubMed  Google Scholar 

  39. Muscedere JG, Mullen JB, Gan K, Slutsky AS: Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994, 149: 1327-1334.

    CAS  Article  PubMed  Google Scholar 

  40. Chiumello D, Pristine G, Slutsky AS: Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999, 160: 109-116.

    CAS  Article  PubMed  Google Scholar 

  41. Slutsky AS, Tremblay LN: Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998, 157: 1721-1725.

    CAS  Article  PubMed  Google Scholar 

  42. Patroniti N, Foti G, Cortinovis B, Maggioni E, Bigatello LM, Cereda M, Pesenti A: Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 2002, 96: 788-794. 10.1097/00000542-200204000-00004

    Article  PubMed  Google Scholar 

Download references


Lukas Brander holds postdoctoral fellowships from the Swiss Foundation for Fellowships in Medicine and Biology (SSMBS) provided by Novartis AG and from the Division of Respirology at the University of Toronto provided by Merck-Frosst. Supported in part by the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Arthur S Slutsky.

Additional information

Competing interests

AS is a consultant for Maquet Medical.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brander, L., Slutsky, A.S. Assisted spontaneous breathing during early acute lung injury. Crit Care 10, 102 (2005).

Download citation

  • Published:

  • DOI:


  • Continuous Positive Airway Pressure
  • Acute Lung Injury
  • Spontaneous Breathing
  • Control Mechanical Ventilation
  • Airway Pressure Release Ventilation