Skip to main content

Recruitment maneuvers and positive end-expiratory pressure/tidal ventilation titration in acute lung injury/acute respiratory distress syndrome: translating experimental results to clinical practice


Recruitment maneuvers and positive end-expiratory pressure (PEEP)/tidal ventilation titration in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are the cornerstone of mechanical ventilatory support. The net result of these possible adjustments in ventilatory parameters is the interaction of the pressure applied in the respiratory system (airway pressure/end expiratory pressure) counterbalanced by chest wall configuration/abdominal pressure along the mechanical ventilatory support duration. Refinements in the ventilatory adjustments in ALI/ARDS are necessary for minimizing the biotrauma in this still life-threatening clinical problem.

It is well known that the main phenomenon of hypoxemia in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is the high shunt fraction caused by the nonaerated areas of the lungs. During the disease process, the volume of extravascular lung water and the lung weight increase and promote the collapse of peripheral airways and lung parenchyma, mainly in the gravitation-dependent lung regions (Fig. 1). This phenomenon can be exacerbated by anesthesia and conditions of chest wall impairment. The relationship between the nonaerated, poorly aerated, normally aerated and hyperinflated lung regions depends on the degree of heterogeneity of the ALI/ARDS and the net result of the interaction of the pressure applied to the lung parenchyma (airway pressure/end expiratory pressure) and chest wall mechanics, as illustrated in the report by Henzler and colleagues [1] appearing in this issue of Critical Care. The most important force is not the airway pressure or tidal volume itself but the stress and strain that this airway pressure/tidal volume generates and the duration of these stresses and strains. At the bedside, the rough equivalent of stress is transpulmonary pressure, and the rough equivalent of the strain is tidal volume/end expiratory lung volume [2].

Figure 1
figure 1

Thoracic tomography of two different models of acute lung injury/acute respiratory distress syndrome (ARDS). (a) Computed tomography (CT) scan of pigs after saline lung lavage before and after recruitment maneuvers with 45 cmH2O of pressure, maintaining a positive end-expiratory pressure (PEEP) of 10 cmH2O, showing some redistribution of ventilation [1]. (b) CT scan of acute respiratory distress syndrome patients before and after a recruitment maneuver with 60 cmH2O maximal inspiratory pressure maintaining PEEP values of 20 and 25 cmH2O.

This modern and complex mechanical ventilatory approach of ALI/ARDS recruitment maneuvers and positive end-expiratory pressure (PEEP)/tidal ventilation titration is a meshwork of interdependent but heterogeneously affected lung subunits that are behave according to different and multiple pressure–volume envelopes of the respiratory system during mechanical ventilation, which in some cases can be represented by respiratory mechanics (depending on the heterogeneity and etiology of the ALI/ARDS and the net results of the mechanical configuration of the respiratory system and the applied inspiratory/expiratory pressure along the mechanical ventilatory support duration) [3]. In 1998, a Brazilian prospective, randomized and controlled trial of mechanical ventilation in patients with ARDS demonstrated that a lung protective ventilation strategy that used recruitment maneuvers (a continuous positive airway pressure of 35 to 45 cmH2O) for 40 s with a higher PEEP set 2 cmH2O above the lower inflection point of the pressure–volume curve of the respiratory system and tidal volumes less than 6 mL/kg was associated with a 28-day intensive care survival rate of 62%. This contrasted with a survival rate of only 29% with conventional ventilation (the lowest PEEP necessary for acceptable oxygenation with a tidal volume of 12 mL/kg without recruitment maneuvers - number necessary to treat = 3, P < 0.001) [4]. In a post hoc analysis, the same group stratified the 53 patients of the trial into quartiles according to PEEP levels and analyzed the 28-day survival rate. A PEEP of more than 12 cmH2O, and particularly greater than 16 cmH2O, was significantly correlated with an improved survival rate in these ARDS patients [3]. Ranieri and colleagues corroborated these results by demonstrating that a ventilation strategy involving higher PEEP/low tidal volume significantly decreased bronchoalveolar lavage and systemic blood levels of tumor necrosis factor-α, IL-8 and IL-6 compared with low PEEP/high tidal volume ventilation [5]. More recently, the same Brazilian group showed that when an almost full recruitment is achieved and maintained by means of sufficient applied PEEP levels (in ARDS patients this is about 18 to 26 cmH2O of PEEP), a partial arterial oxygen tension plus partial arterial CO2 tension of more than 400 mmHg at a fraction of inspired oxygen of 100% is well correlated with less than 5% of lung collapse as shown on a thoracic computed tomography (CT) scan, ensuring more homogeneous ventilation (Fig. 1) [3].

Recruitment maneuvers, PEEP and tidal ventilation titration in ALI/ARDS exert varied effects on airway caliber, the ventilation:perfusion ratio distribution, cardiac output and many as yet incompletely understood effects on the macromechanical and micromechanical properties of the diseased lung parenchyma [68]. The history of mechanical ventilation in previous breaths and the applied PEEP level strongly determine the working envelope in the present breath and the chances of promoting intratidal recruitment during mechanical ventilation in ARDS patients. Overdistension and the opening and closing of alveoli during tidal ventilation are important issues in ventilator-induced lung injury [9]. Airspace collapse as shown by a thoracic CT scan is associated with hypoxemia in early ALI/ARDS [1, 3] and can be reversed with a maximum lung recruitment strategy that can be applied to critically ill patients and may lead to 2 better pulmonary function at hospital discharge [3]. So, careful studies of the mechanical, gas-exchange and hemodynamic consequences of mechanical ventilatory support in the experimental and clinical critical care settings of ALI/ARDS are still necessary for a better understanding of the extremely complex issues involved in improving the prognosis of this still life-threatening clinical problem.

More intriguing are the recent results showing that dead space fractions were elevated early in the course of ARDS patients and that the dead space fraction is an independent risk factor for death [10]. Corroborating these results are the observations that ALI/ARDS patients who had a decreased partial arterial CO2 tension during a prone-position protocol had improved survival compared with the nonresponders [11]. So, respiratory mechanics, gas exchange and hemodynamic parameters as well as medical treatment for the etiology of ALI/ARDS (for example viral infections, bacterial infections, pancreatitis or gastric aspiration) are important issues that have to be kept in the mind of the critical care physicians when treating a patient with ARDS in the intensive care unit.



acute lung injury


acute respiratory distress syndrome


computed tomography




positive end-expiratory pressure.


  1. Henzler D, Pelosi P, Dembinski R, Ullmann A, Mahnken AH, Rossaint R, Kuhlen R: Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury. Critical Care 2005, 9: R471-R482. 10.1186/cc3772

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gattinoni L, Carlesso E, Valenza F, Chiumello D, Caspani ML: Acute respiratory distress síndrome, the critical care paradigm: what we learned and what we forgot. Curr Opin Crit Care 2004, 10: 272-278. 10.1097/01.ccx.0000135511.75998.22

    Article  PubMed  Google Scholar 

  3. Barbas CSV, Matos GFJ, Pincelli MP, Borges ER, Antunes T, Barros JM, Okamoto V, Borges JB, Amato MBP, Carvalho CRR: Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care 2005, 11: 18-28. 10.1097/00075198-200502000-00004

    Article  PubMed  Google Scholar 

  4. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR: Effect of prospective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998, 338: 347-354. 10.1056/NEJM199802053380602

    Article  CAS  PubMed  Google Scholar 

  5. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS: Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome; a randomized controlled trial. JAMA 1999, 281: 77-78. 10.1001/jama.281.1.77

    Article  Google Scholar 

  6. Gattinoni L, Caironi P, Pelosi P, Goodman LR: What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001, 164: 1701-1711.

    Article  CAS  PubMed  Google Scholar 

  7. Marini JJ: Recruitment maneuvers to achieve an 'open lung' – whether and how? Crit Care Med 2001, 29: 1647-1648. 10.1097/00003246-200108000-00032

    Article  CAS  PubMed  Google Scholar 

  8. Lachmann B: Open up the lung and keep the lung open. Intensive Care Med 1992, 18: 319-321. 10.1007/BF01694358

    Article  CAS  PubMed  Google Scholar 

  9. Santos CC, Zhang H, Liu M, Slutsky AS: Bench-to-bedside review: Biotrauma and modulation of the innate immune response. Crit Care 2005, 9: 280-286. 10.1186/cc3022

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA: Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002, 346: 1281-1286. 10.1056/NEJMoa012835

    Article  PubMed  Google Scholar 

  11. Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, Valenza F, Caironi P, Pesenti A, Prone-Supine Study Group: Decreased in PaCO 2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 2003, 31: 2727-2733. 10.1097/01.CCM.0000098032.34052.F9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Carmen Sílvia Valente Barbas.

Additional information

Competing interests

The author(s) declare that they have no competing interests.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barbas, C.S.V., de Mattos, G.F. & Borges, E.R.d. Recruitment maneuvers and positive end-expiratory pressure/tidal ventilation titration in acute lung injury/acute respiratory distress syndrome: translating experimental results to clinical practice. Crit Care 9, 424 (2005).

Download citation

  • Published:

  • DOI:


  • Continuous Positive Airway Pressure
  • Tidal Volume
  • Recruitment Maneuver
  • Mechanical Ventilatory Support
  • Lower Inflection Point