The UK National Health Service major incident planning guidance [9] emphasizes that the 'treatment of life-threatening injury should take priority over monitoring or decontamination where there is contamination with a radioactive substance only.' The reason for this is that the risk to staff from radiological contamination on or in a patient is very low indeed. Thus, managing a radiological incident is theoretically much more straightforward than one that may involve biological or chemical agents.
Initial triage of patients should therefore follow advanced trauma life support and major incident guidelines as appropriate [10, 11]. The time interval between exposure and vomiting can be useful as a triage tool for those physically uninjured by any blast [5]. If the person vomited within an hour, then they are likely to have received a large dose of radiation and should be managed in a centre with radiopathology expertise. If vomiting occurs 1–2 hours after exposure, then a hospital ward with haematology experience is most appropriate; and if vomiting starts beyond 2 hours then surveillance on a general hospital ward is advised. If the patient does not vomit then outpatient surveillance is acceptable.
In practice, most institutions will not have an initial response sophisticated enough to respond in differing ways to the various nonconventional threats (i.e. biological, chemical, or radiological). Thus, most hospitals will activate a plan that will involve decontaminating walk-in casualties before allowing them into the emergency department. However, once the initial confusion has settled, active management of the response should remove unnecessary delays in treatment.
Without prejudicing the treatment of traumatic injury, the main specific preventative measure for patients involved in a radiological incident is decontamination. This may have already been done by the emergency services close to the scene (near the 'hot' zone), or may be performed just before casualties enter the hospital. In the case of people with life-threatening conditions this may be delayed until after initial management. The most important element of decontamination is removal of the person's clothes. Where possible casualties should do this for themselves, but they may be assisted by health care staff. Ideally, the health care staff involved in this will wear full protective clothing, but a study has shown that a surgical mask and careful removal of clothes to prevent aerosolization did not lead to contamination of health care workers [3]. The risk of aerosolization can be reduced by gently dampening the clothes before removal, cutting rather than pulling off the clothes, and immediately placing the clothes in a plastic bag and sealing it. The second element of decontamination is a shower, with copious quantities of water. This is particularly challenging in the case of critically ill patients. A thorough wash, using standard precautions, will suffice but decontamination units should have facilities for recumbent casualties.
A further possible specific counter-measure is the issue of stable iodine tablets, which is only of benefit where a release of radioactive iodine has occurred. This is seen with the detonation of nuclear weapons and major accidental release from nuclear reactors. The iodine works by saturating iodine-binding sites in the thyroid before radio-iodine can bind, thus reducing the accumulating radiation exposure to the thyroid. Stable iodine will not prevent any other radiation effects. Health protection organizations will provide advice on this. In the UK there are supplies of stable iodine at nuclear reactor sites and at other locations; other countries have adopted similar public health strategies.