Skip to content


  • Meeting abstract
  • Open Access

Hypothermia in cardiogenic shock

  • 1
Critical Care201216 (Suppl 2) :A21

  • Published:


  • Infarct Size
  • Metabolic Acidosis
  • Papillary Muscle
  • Cardiogenic Shock
  • Filling Pressure

Cardiogenic shock is a state of inadequate systemic tissue perfusion, despite adequate left ventricular filling pressure. It is caused by extensive myocardial damage and appears to be aggravated by a systemic inflammatory response [14]. The result is hypotension with metabolic acidosis and often a fatal outcome. The condition affects approximately 5% of the patients with myocardial infarction, and carries a dismal prognosis if it prevails after reperfusion.

Therapeutic hypothermia has several properties of potential benefit in cardiogenic shock: Experiments with isolated myofibrils, papillary muscles and cross-circulated hearts have demonstrated that mild hypothermia increases myocardial contractility [57]. In the in vivo heart, mild hypothermia has been found to increase stroke volume and cardiac output [6, 8].

The increase in contractility is considered to be mediated by an increased myofilament sensitivity to existing Ca2+, without a corresponding increase in myocardial oxygen consumption [9]. Moreover, hypothermia reduces the metabolic rate with 5 to 7%/°C [10, 11], thereby reducing the demand on the circulation from the peripheral tissues. In an experimental setting, it also has the ability to reduce infarct size if applied prior to reperfusion [12, 13].

In dog-based and porcine-based models of cardiogenic shock secondary to ischemia, therapeutic hypothermia has improved hemodynamic and metabolic parameters, and reduced mortality [14, 15]. No randomized controlled trials of therapeutic hypothermia in cardiogenic shock in humans exist, but case series indicate that the effects observed in animal experiments can be reproduced [1619].

In conclusion, therapeutic hypothermia is a promising treatment option for patients in cardiogenic shock that warrants further investigation.

Authors’ Affiliations

Department of Cardiology, Lund University, Skane University Hospital, Sweden


  1. Hochman JS: Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation 2003, 107: 2998-3002. 10.1161/01.CIR.0000075927.67673.F2View ArticlePubMedGoogle Scholar
  2. Kaluski E, Hendler A, Blatt A, Uriel N: Nitric oxide synthase inhibitors in post-myocardial infarction cardiogenic shock - an update. Clin Cardiol 2006, 29: 482-488. 10.1002/clc.4960291103View ArticlePubMedGoogle Scholar
  3. Cotter G, Berger PB: Cardiogenic shock - beyond the large infarction. Crit Care Med 2006, 34: 2234-2235. 10.1097/01.CCM.0000229671.12922.27View ArticlePubMedGoogle Scholar
  4. Geppert A, Dorninger A, Delle-Karth G, Zorn G, Heinz G, Huber K: Plasma concentrations of interleukin-6, organ failure, vasopressor support, and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med 2006, 34: 2035-2042. 10.1097/01.CCM.0000228919.33620.D9View ArticlePubMedGoogle Scholar
  5. Bjornstad H, Tande PM, Refsum H: Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle. Acta Physiol Scand 1993, 148: 253-264. 10.1111/j.1748-1716.1993.tb09556.xView ArticlePubMedGoogle Scholar
  6. Weisser J, Martin J, Bisping E, Maier LS, Beyersdorf F, Hasenfuss G, Pieske B: Influence of mild hypothermia on myocardial contractility and circulatory function. Basic Res Cardiol 2001, 96: 198-205. 10.1007/s003950170071View ArticlePubMedGoogle Scholar
  7. Mattheussen M, Mubagwa K, Van Aken H, Wusten R, Boutros A, Flameng W: Interaction of heart rate and hypothermia on global myocardial contraction of the isolated rabbit heart. Anesth Analg 1996, 82: 975-981.PubMedGoogle Scholar
  8. Nishimura Y, Naito Y, Nishioka T, Okamura Y: The effects of cardiac cooling under surface-induced hypothermia on the cardiac function in the in situ heart. Interact Cardiovasc Thorac Surg 2005, 4: 101-105. 10.1510/icvts.2004.097188View ArticlePubMedGoogle Scholar
  9. Suga H, Goto Y, Igarashi Y, Yasumura Y, Nozawa T, Futaki S, Tanaka N: Cardiac cooling increases E max without affecting relation between O 2 consumption and systolic pressure-volume area in dog left ventricle. Circ Res 1988, 63: 61-71.View ArticlePubMedGoogle Scholar
  10. Polderman KH: Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Med 2009, 37: S186-S202. 10.1097/CCM.0b013e3181aa5241View ArticleGoogle Scholar
  11. Polderman KH: Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality - Part 2: practical aspects and side effects. Intensive Care Med 2004, 30: 757-769. 10.1007/s00134-003-2151-yView ArticlePubMedGoogle Scholar
  12. Gotberg M, Olivecrona GK, Koul S, Carlsson M, Engblom H, Ugander M, van der Pals J, Algotsson L, Arheden H, Erlinge D: A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv 2010, 3: 400-407. 10.1161/CIRCINTERVENTIONS.110.957902View ArticlePubMedGoogle Scholar
  13. Götberg M M, Olivecrona GK, Engblom H, Ugander M, van der Pals J, Heiberg E, Arheden H, Erlinge D: Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size. BMC Cardiovasc Disord 2008, 8: 7. 10.1186/1471-2261-8-7PubMed CentralView ArticlePubMedGoogle Scholar
  14. Gotberg M, van der Pals J, Olivecrona GK, Koul S, Erlinge D: Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model. Resuscitation 2010, 81: 1190-1196. 10.1016/j.resuscitation.2010.04.033View ArticlePubMedGoogle Scholar
  15. Boyer NH, Gerstein MM: Induced hypothermia in dogs with acute myocardial infarction and shock. J Thorac Cardiovasc Surg 1977, 74: 286-294.PubMedGoogle Scholar
  16. Skulec R, Kovarnik T, Dostalova G, Kolar J, Linhart A: Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol Scand 2008, 52: 188-194. 10.1111/j.1399-6576.2007.01510.xView ArticlePubMedGoogle Scholar
  17. Hovdenes J, Laake JH, Aaberge L, Haugaa H, Bugge JF: Therapeutic hypothermia after out-of-hospital cardiac arrest: experiences with patients treated with percutaneous coronary intervention and cardiogenic shock. Acta Anaesthesiol Scand 2007, 51: 137-142. 10.1111/j.1399-6576.2006.01209.xView ArticlePubMedGoogle Scholar
  18. Yahagi N, Kumon K, Watanabe Y, Tanigami H, Haruna M, Hayashi H, Imanaka H, Takeuchi M, Ohashi Y, Takamoto S: Value of mild hypothermia in patients who have severe circulatory insufficiency even after intra-aortic balloon pump. J Clin Anesth 1998, 10: 120-125. 10.1016/S0952-8180(97)00255-9View ArticlePubMedGoogle Scholar
  19. Moriyama Y, Iguro Y, Shimokawa S, Saigenji H, Toyohira H, Taira A: Successful application of hypothermia combined with intra-aortic balloon pump support to low-cardiac-output state after open heart surgery. Angiology 1996, 47: 595-599. 10.1177/000331979604700608View ArticlePubMedGoogle Scholar


© van der Pals; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.