Skip to main content
Fig. 6 | Critical Care

Fig. 6

From: A novel capnogram analysis to guide ventilation during cardiopulmonary resuscitation: clinical and experimental observations

Fig. 6

Illustration of thoracic distension mechanism based on airway pressure, flow and CO2 analysis. This figure illustrates from top to bottom, airway pressure (Paw), flow at airway opening (Flow) and expired CO2 (CO2) tracings obtained in cadavers (panel A), bench (panel B) and animals (panel C). The left column illustrates thoracic distension, while the right column represents regular pattern. For each situation, the two gray vertical tilted lines define the time for the lung volume to return to FRC (time with thorax above FRC), while the two black vertical tilted lines define the expiration time (time between two insufflations). Positive flow indicates decompression or insufflation. Negative flow indicates compression or exhalation. Please note the exact time correspondence between flow and CO2 oscillations whatever the situation. During expiration, in case of thoracic distension (left column), the flow does not return to zero line during a couple of CC indicating that the thorax is still above FRC even during the decompression phase. CO2 oscillations resume only once the flow crosses the zero line, thus indicating the return of lung volume to FRC. On the contrary, the right column obtained with a smaller Vt illustrates that the flow induced by CC crosses the zero line immediately after insufflation generating CO2 full oscillations. This specific full oscillating CO2 pattern indicates that chest compressions operate close to FRC

Back to article page