Skip to main content

Volume 14 Supplement 2

Sepsis 2010

Disruption of sarcolemmal dystrophin and β-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis


Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy.

Methods and results

Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and β-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-α2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability.


The present study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and β-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that oxidative damage may mediate the loss of dystrophin and β-dystroglycan in septic mice. These abnormal parameters emerge as therapeutic targets, and their modulation may provide beneficial effects on future cardiovascular outcomes and mortality in sepsis.


This presentation was supported by a grant from FAPESP (n.07/58843-2) and CNPq (n.470536-2008).

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Celes, M., Torres-Duenas, D., Malvestio, L. et al. Disruption of sarcolemmal dystrophin and β-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis. Crit Care 14 (Suppl 2), P54 (2010).

Download citation

  • Published:

  • DOI: