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Abstract 

Background:  The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections dispropor-
tionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understand-
ing of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. 
We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-
Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical 
outcomes.

Methods:  Among a prospective observational cohort of 288 adults hospitalized with suspected sepsis in Uganda, we 
applied machine learning methods to 14 soluble host immune mediators, reflective of key domains of sepsis immu-
nopathology (innate and adaptive immune activation, endothelial dysfunction, fibrinolysis), to identify immune sub-
types in randomly-split discovery (N = 201) and internal validation (N = 87) sub-cohorts. In parallel, we applied similar 
methods to whole-blood RNA-sequencing data from a consecutive subset of patients (N = 128) to identify transcrip-
tional subtypes, which we characterized using biological pathway and immune cell-type deconvolution analyses.

Results:  Unsupervised clustering consistently identified two immune subtypes defined by differential activation 
of pro-inflammatory innate and adaptive immune pathways, with transcriptional evidence of concomitant CD56(-)/
CD16( +) NK-cell expansion, T-cell exhaustion, and oxidative-stress and hypoxia-induced metabolic and cell-cycle 
reprogramming in the hyperinflammatory subtype. Immune subtypes defined by greater pro-inflammatory immune 
activation, T-cell exhaustion, and metabolic reprogramming were consistently associated with a high-prevalence of 
severe and often disseminated HIV-associated tuberculosis, as well as more extensive organ dysfunction, worse func-
tional outcomes, and higher 30-day mortality.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  mjc2244@columbia.edu
1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department 
of Medicine, Columbia University Vagelos College of Physicians 
and Surgeons, 622 West 168th St, PH 8E‑101, New York, NY 10032, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2906-0966
http://orcid.org/0000-0002-1232-3718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-022-03907-3&domain=pdf


Page 2 of 15Cummings et al. Critical Care           (2022) 26:36 

Introduction
The global burden of sepsis is concentrated in sub-Saha-
ran Africa (SSA), where nearly 40% of all sepsis cases 
occur and up to 65% of all deaths are sepsis-related [1, 
2]. In this context, where epidemic HIV, extensive patho-
gen diversity, and limited critical care capacity challenge 
effective management of life-threatening infections, clini-
cal trials of sepsis treatment protocols developed in high-
income countries (HICs) have repeatedly shown harm 
[3, 4]. As treatment efficacy likely depends, in part, on 
modifying complex host responses incited by an array 
of pathogens, imprecise understanding of biological het-
erogeneity inherent to sepsis in SSA represents a crucial 
barrier to development of locally-effective management 
strategies [5].

In high-income countries (HICs), where sepsis typically 
affects older adults with severe bacterial infections [2], 
comprehensive profiling of the host response has estab-
lished immunopathological models defined by dynamic 
features of inflammation, dysregulated endothelial and 
cellular metabolic function, and immunosuppression. 
Although identification of effective, biologically-driven 
therapeutics for sepsis in HICs remains elusive, such 
models have laid the conceptual groundwork for devel-
opment of more precise treatment strategies [5–10]. In 
SSA, where sepsis disproportionately affects young, HIV-
infected adults and high-burden pathogens are unique 
[3], data informing locally-relevant models of sepsis 
immunopathology are scarce.

Among a prospective cohort of adults hospitalized 
with suspected sepsis in Uganda [11], we applied a mul-
tidimensional approach to determine inter-individual 
immunologic heterogeneity and identify distinct, bio-
logically-driven host response subtypes that may have 
prognostic and therapeutic relevance in the unique SSA 
context.

Methods
Study setting, participants, and design
In this exploratory study, we analyzed data and blood 
samples from a prospective observational cohort 
(Research in the Epidemiology of Severe and Emerg-
ing Infections in Uganda; RESERVE-U) of adults 
(age ≥ 18  years) hospitalized with severe, undifferenti-
ated infection (suspected sepsis) at Entebbe General 
Referral Hospital (EGRH) in central Uganda from April 

2017-August 2019 [11]. EGRH is a 200-bed public district 
referral hospital with a catchment area of approximately 
3 million persons. In the primary catchment area, HIV 
prevalence is approximately 6% and malaria is endemic 
[11]. Representative of a general district hospital in SSA, 
there is no intensive care unit at EGRH. No vasopressor 
or inotropic agents are available and intravenous (IV) 
fluid is typically delivered as 250–500  ml infusions of 
crystalloid. As no piped oxygen was available at EGRH 
during the enrollment period, oxygen concentrators were 
provided to hospital wards as part of the study program.

Patients were included in the parent RESERVE-U study 
if they fulfilled the following criteria: (1) age ≥ 18  years, 
(2) reported a history of fever or had a recorded axillary 
temperature of ≥ 37.5ºC at presentation, (3) had clinical 
illness severe enough to warrant admission to hospital, 
and (4) were able to provide informed consent or had 
a surrogate available to do so. Patients were excluded 
if they presented following trauma or were admit-
ted to a non-medical ward. Study enrollment occurred 
within 24 h of hospital admission. Further details of the 
RESERVE-U study have been published and are summa-
rized in the supplement [11].

Among patients enrolled in the parent RESERVE-U 
study, we applied a multidimensional approach to dis-
sect the host immune response (Additional file 1: Figure 
E1). First, given the unsupervised nature of our analyses, 
we randomly split our parent cohort of 288 patients into 
discovery (70%; N = 201) and internal validation (30%; 
N = 87) sub-cohorts. We then performed unsupervised 
clustering on 14 soluble host mediators, chosen a priori 
to reflect putative domains of sepsis immunopathol-
ogy (innate and adaptive immune activation, endothelial 
dysfunction, fibrinolysis), to identify immune subtypes 
in the discovery and internal validation cohorts inde-
pendently. Molecular signatures defining each immune 
subtype in the discovery cohort were explored using clas-
sification, regression, and network analyses. In parallel, 
we performed unsupervised clustering on whole-blood 
RNA-sequencing data from a consecutive subset of 128 
patients in the parent cohort to identify transcriptional 
subtypes, which we characterized using biological path-
way and immune cell-type deconvolution analyses. We 
compared microbiological characteristics and clinical 
outcomes across soluble mediator- and transcriptionally-
derived immune subtypes, and integrated these results 

Conclusions:  Our results highlight unique host- and pathogen-driven features of sepsis immunopathology in sub-
Saharan Africa, including the importance of severe HIV-associated tuberculosis, and reinforce the need to develop 
more biologically-informed treatment strategies in the region, particularly those incorporating immunomodulation.
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to harmonize the biological and clinical relevance of our 
findings.

Pathogen diagnostics
For all enrolled patients in the RESERVE-U study, rapid 
testing was performed for malaria, influenza, and HIV; 
for HIV-infected patients testing for tuberculosis (TB) 
was also performed. Testing for these pathogens was 
informed by World Health Organization (WHO) guide-
lines for management of sepsis and septic shock in 
resource-limited hospitals in sub-Saharan Africa (WHO 
Integrated Management of Adolescent and Adult Ill-
ness [IMAI] District Clinician Manual) [12]. The WHO 
IMAI guidelines emphasize rapid testing for malaria and 
HIV, a low threshold for TB testing among HIV-infected 
patients, and consideration of testing or empiric treat-
ment for influenza. Further details are in the supplement.

Serum immunoassays
From cryopreserved serum samples collected at the time 
of study enrollment, interleukin (IL)-6, IL-8, IL-10, inter-
feron (IFN)-γ, IFN-γ-induced protein-10/C-X-C motif 
chemokine 10 (IP-10/CXCL10), macrophage inflam-
matory protein-1-alpha/chemokine (C–C motif ) ligand 
3 (MIP-1α/CCL3), macrophage inflammatory protein-
1-beta/chemokine (C–C motif ) ligand 4 (MIP-1β/CCL4), 
tumor necrosis factor-alpha (TNF-α), angiopoietin-1 
(Ang-1), angiopoietin-2 (Ang-2), macrophage migration 
inhibitory factor (MIF), plasminogen activator inhibi-
tor-1 (PAI-1), soluble TNF-receptor type 1 (sTNFR1), 
and soluble IL-2 receptor alpha/soluble CD25 (sIL-
2RA/sCD25), were quantified using custom Luminex 
200 system kits (Luminex, Austin, TX, USA) from Mil-
liporeSigma (Burlington, Massachusetts, USA) and R&D 
Systems (Minneapolis, MN, USA). Further details are in 
the supplement.

Whole‑blood RNA isolation, library preparation, 
and sequencing
From cryopreserved whole-blood samples collected 
in PAXgene blood RNA tubes (PreAnalytiX, Qiagen/
BD, Hombrechtikon, Switzerland) at the time of study 
enrollment, RNA was isolated and purified using PAX-
gene blood RNA kits (Qiagen, Hilden, Germany). RNA 
sequencing libraries were prepared using the NEBNext 
Ultra RNA Library Prep Kit (NEB, Ipswich, MA, USA). 
Sequencing libraries were multiplexed and analyzed 
using a 2 × 150 paired-end configuration on the Illu-
mina HiSeq 4000 platform (Illumina, Inc., San Diego, 
CA, USA). Adapters were trimmed from raw reads using 
Trimmomatic and sequencing data quality was assessed 
with FastQC [13, 14]. Sequencing reads were aligned to 
the human genome (GRCh38) using STAR and transcript 

quantification was performed using the R-subread pack-
age’s featureCounts utility [15, 16]. Further details are in 
the supplement.

Analysis of soluble immune mediators
To identify immune subtypes, we applied unsupervised 
clustering methods to serum mediator concentrations 
from patients in the discovery and internal validation 
cohorts independently. Clustering is a form of unsuper-
vised machine learning that seeks to classify individual 
data points into clusters, or groups, based on metrics of 
similarity (e.g., distance, correlation), when the under-
lying group structure is unknown [17]. Specifically, we 
applied agglomerative hierarchical clustering (using 
Ward’s method and Euclidean distance) to log10 trans-
formed, scaled, and centered mediator concentrations 
to initiate a cluster partition, followed by a k-means pro-
cedure to consolidate cluster membership [18]. We used 
within-cluster-sum-of-squares to determine the optimal 
number of clusters, which we confirmed using over 20 
indices of cluster validity and stability [19]. We visualized 
between-cluster variance in mediator concentrations 
using principal component analysis and standardized 
heatmaps. Further details are in the supplement.

To identify the most influential variables driving clus-
ter (i.e. immune subtype) assignment in the discovery 
cohort, we determined representation of mediator vari-
ables on the first two principal components by calculat-
ing squared factor loadings for each variable. Separately, 
we applied a gradient-boosted decision tree algorithm, 
trained to predict cluster assignment, to our mediator 
variables, and identified the most important discrimi-
natory variables using their respective split gain values. 
Next, to explore longitudinal, cluster-specific changes in 
soluble mediators over the course of illness, we evalu-
ated the relationship between mediator concentrations 
and reported duration of illness at admission (obtained 
via patient or surrogate) using robust regression, with 
patient-level datapoints stratified by cluster assignment. 
Lastly, to determine inter-mediator relationships within 
each discovery cohort cluster and identify “central” medi-
ators around which each cluster may be coordinated, 
we constructed force-directed weighted correlation net-
works [20–22]. Further details are in the supplement.

Analysis of whole‑blood RNA‑sequencing data
Independent of soluble mediator analyses and using 
the same parameters, we performed unsupervised hier-
archical clustering of whole-blood RNA-sequencing 
data from a consecutively enrolled subset of patients 
(N = 128) in the RESERVE-U cohort. Following determi-
nation of the optimal number of clusters (i.e. transcrip-
tional subtypes) using within-cluster-sum-of-squares, 



Page 4 of 15Cummings et al. Critical Care           (2022) 26:36 

we identified genes that were differentially expressed 
across each cluster based on a log-fold change ≥|1| and 
Benjamini-Hochberg-adjusted p-value ≤ 0.01 [23, 24]. 
Differentially expressed gene sets were selected for bio-
logical pathway analysis (Ingenuity Pathway Analysis, 
Qiagen), results of which were examined to infer func-
tional differences between identified clusters. Using 
the ImmQuant software package and IRIS and DMAP 
mRNA compendiums, we applied digital cell quantifica-
tion (DCQ) deconvolution to our differentially expressed 
gene sets to infer relative immune cell quantities across 
transcriptional clusters [25–27]. Further details are in the 
supplement.

Statistical analyses
In presentations of clinical data, continuous variables 
are expressed as medians (interquartile range [IQR]) 
and categorical variables are summarized as counts and 
percentages with 95% confidence intervals (CI) and two-
sided p-values presented where relevant. Clinical and 
microbiological characteristics across immune media-
tor- and transcriptional subtypes were compared using 
Chi-squared, Fisher exact, or Wilcoxon rank-sum tests 
as appropriate. Univariable and multivariable logistic 
regression were used to compare the primary outcome 
of 30-day mortality across identified immune subtypes. 
Given the exploratory nature of this study, no adjust-
ment for multiple comparisons was performed unless 
indicated. For the primary outcome of 30-day vital status, 
mortality was not imputed if vital status was unknown, 
and a sensitivity analysis was performed to account for 
potential bias due to loss-to-follow-up. Further details 
are in the supplement.

Analyses were performed using R (v3.6.1, R Founda-
tion for Statistical Computing, Vienna, Austria) via the 
RStudio (v1.4.1106) environment, with specific pack-
ages detailed in the supplement. Biological pathway and 
immune deconvolution analyses of RNA-sequencing data 
were performed using Ingenuity Pathway Analysis (Qia-
gen, Hilden, Germany) and ImmQuant, respectively [25]. 
Study overview and flow diagrams were created with 
Biorender.

Results
Participants
Of 301 adult patients enrolled in the RESERVE-U 
cohort, 288 (96%) and 128 (43%) had serum and whole-
blood RNA samples available for analysis, respectively, 
and were included in this study (Additional file 1: Fig-
ure E2). Characteristics of the 288 patients for whom 
soluble mediators were analyzed, nearly 90% of whom 
had ≥ 1 quick-Sepsis-related Organ Failure Assessment 

(qSOFA) criterion, are presented in Table  1. Charac-
teristics of patients who had RNA samples analyzed 
were similar to those who did not (Additional file  1: 
Table E1).

Unsupervised clustering of soluble mediators 
consistently reveals two immune subtypes among adults 
with suspected sepsis in Uganda
In the discovery and internal validation cohorts, a two 
cluster (i.e. two subtype) model was determined to be 
optimal based on multiple indices of cluster stability 
and validity (Fig. 1a, b and Additional file 1: Figure E3A-
E3B, Tables E2-E3), with clear between-cluster separa-
tion across the first principal component of mediator 
variance (Figs.  1c and Additional file  1: Figure E3C). In 
both the discovery and internal validation cohorts, solu-
ble mediator subtype 2 (S2) was associated with signifi-
cantly higher concentrations of key mediators promoting 
inflammation (MIF, IFN-γ, IL-6, TNF-α), T-cell activation 
and tolerance (sIL-2Ra/sCD25), and neutrophil (IL-8), 
monocyte/macrophage, NK, Th1, and dendritic-cell (IP-
10/CXCL10, MIP-1α/CCL3, MIP-1β/CCL4) chemotaxis 
(Figs.  1d, Additional file  1: Figure E3D, E4-E5, Tables 
E4-E5). Although these markers were observed alongside 
elevated concentrations of anti-inflammatory media-
tors (sTNFR1 and IL-10), ratios of IL-6/IL-10, IFN-γ/
IL-10, and TNF-α/sTNFR1 were consistently higher in 
subtype 2, suggesting imbalance towards a more pro-
inflammatory state (Additional file  1: Figures  E4-E5, 
Tables E4-E5). While concentrations of Ang-1, which 
promotes endothelial stability and dampening of inflam-
mation, were higher in subtype 1 (S1), those of Ang-2, a 
pro-inflammatory mediator of endothelial activation and 
destabilization, were significantly higher in S2, as was 
the ratio of Ang-2/Ang-1. Examination of squared factor 
loadings and gradient-boosted decision tree models both 
identified sTNFR1, IP-10/CXCL10, TNF-α, IL-6, and sIL-
2Ra/sCD25 as the most influential mediators driving sub-
type assignment (Fig. 1e, f ).

Network analyses demonstrate subtype‑specific responses 
coordinated around shared and distinct mediators
Force-directed network structures were unique to each 
discovery cohort subtype and were differentially coordi-
nated around a core of central mediators. Although some 
mediators were central in both subtypes, the core S1 net-
work included more anti-inflammatory and endothelial-
protective mediators (sTNFR1, IL-10, Ang-1) (Fig. 1g). In 
contrast, S2 was coordinated around more pro-inflam-
matory and chemotactic (MIP-1α/CCL3, MIP-1β/CCL4, 
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Table 1  Patient characteristics stratified by discovery and internal validation cohorts

IQR: interquartile range, qSOFA: quick sequential (sepsis-related) organ failure assessment, SIRS: systemic inflammatory response syndrome, MEWS: modified early 
warning score, UVA: universal vital assessment, HIV: human immunodeficiency virus, WHO: World Health Organization, ART: anti-retroviral therapy, RDT: rapid 
diagnostic test, TB: tuberculosis, LAM: lipoarabinomannan, PCR: polymerase chain reaction
a Unknown for 1 patient
b Anything other than “Alert” on AVPU (alert, responsive to voice, responsive to pain, unresponsive) mental status assessment
c Systolic blood pressure ≤ 100 mmHg, respiratory rate ≥ 22 breaths/min, and encephalopathy, latter defined using AVPU scale
d Temperature ≥ 38 °C or < 36 °C, heart rate ≥ 90 beats/min, respiratory rate ≥ 20 breaths/min
e Systolic blood pressure ≤ 90 mmHg despite administration of ≥ 1 L of intravenous fluid
f Oxygen saturation ≤ 90% or respiratory rate ≥ 30 breaths/min
g Hemoglobin < 9 g/dl or administration of blood transfusion

Patient characteristic All patients (N = 288) Discovery cohort 
(N = 201)

Internal 
validation cohort 
(N = 87)

Female sex, n (%) 171/288 (59.4) 116/201 (57.7) 55/87 (63.2)

Age, years, median [IQR] 32 [26, 42] 32 [26, 40] 32 [27, 43]

Duration of illness prior to admission, days, median [IQR]a 4 [3, 7] 4 [3, 7] 4 [3, 7]

History of fever, n (%) 288/288 (100.0) 201/201 (100.0) 87/87 (100.0)

Night sweats 225/288 (78.1) 161/201 (80.1) 64/87 (73.6)

Headache 227/288 (78.8) 158/201 (78.6) 69/87 (79.3)

Cough 178/288 (61.8) 125/201 (62.2) 53/87 (60.9)

Diarrhea 100/288 (34.7) 70/201 (34.8) 30/87 (34.5)

Shortness of breath 66/288 (22.9) 47/201 (23.4) 19/87 (21.8)

Dysuria 39/288 (13.5) 31/201 (15.4) 8/87 (9.2)

Received antibiotic or antimalarial agent prior to admission, n (%) 102/288 (35.4) 70/201 (34.8) 32/87 (36.8)

Temperature ≥ 38 °C, n (%) 104/288 (36.1) 76/201 (37.8) 28/87 (32.2)

Temperature < 36 °C, n (%) 84/288 (29.2) 58/201 (28.9) 26/87 (29.9)

Heart rate, beats/min, median [IQR] 98 [87,109] 98 [86,108] 98 [90,111]

Respiratory rate, beats/min, median [IQR] 22 [21, 26] 22 [21, 26] 22 [20, 26]

Systolic blood pressure, mmHg, median [IQR] 103 [91,117] 104 [91,118] 100 [92,113]

Oxygen saturation, %, median [IQR] 97 [95,98] 97 [96,98] 97 [95,98]

Encephalopathy, n (%)b 57/288 (19.8) 40/201 (19.9) 17/87 (19.5)

qSOFA score ≥ 2, n (%)c 129/288 (44.8) 88/201 (43.8) 41/87 (47.1)

qSOFA score ≥ 1, n (%)c 253/288 (87.8) 174/201 (86.6) 79/87 (90.8)

Modified SIRS score ≥ 2, n (%)d 247/288 (85.8) 173/201 (86.1) 74/87 (85.1)

MEWS, median [IQR] 3 [2, 5] 3 [2, 4] 3 [2, 5]

UVA score, median [IQR] 3 [2, 4] 3 [1, 4] 2 [2, 4]

Shock, n (%)e 41/288 (14.2) 28/201 (13.9) 13/87 (14.9)

Acute respiratory failure, n (%)f 61/288 (21.2) 39/201 (19.4) 22/87 (25.3)

Severe anemia, n (%)g 56/288 (19.4) 39/201 (19.4) 17/87 (19.5)

HIV-infected, n (%) 154/286 (53.8) 106/199 (53.2) 48/87 (55.2)

WHO clinical stage 3 or 4, n (%) 125/154 (81.2) 91/106 (85.8) 34/48 (71.0)

Newly diagnosed HIV-infection, n (%) 20/154 (13.0) 12/106 (11.3) 8/48 (16.7)

On ART prior to admission, n (%)h 91/134 (67.9) 63/94 (67.0) 28/40 (70.0)

On TMP-SMX prior to admission, n (%)h 94/134 (70.1) 65/94 (69.1) 29/40 (72.5)

Malaria RDT positive, n (%) 59/283 (20.8) 38/197 (19.3) 21/86 (24.4)

Microbiological TB positive, n (%)i 51/288 (17.7) 35/201 (17.4) 16/87 (18.4)

Urine TB-LAM positive 40/122 (32.8) 27/83 (32.5) 13/39 (33.3)

Influenza PCR positive, n (%) 17/262 (6.5) 14/184 (7.6) 3/78 (3.8)

Death in-hospital or transfer, n (%) 40/288 (13.9) 28/201 (13.9) 12/87 (13.8)

Duration of hospitalization, days, median [IQR]j 5 [3, 8] 5 [3, 7] 5 [3, 8]

KPS ≤ 70 at alive discharge, n (%) 20/246 (8.1) 12/173 (6.9) 8/73 (11.0)

Death at 30-days post-discharge, n (%) 62/260 (23.8) 44/179 (24.6) 18/81 (22.2)
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TNF-α) and endothelial-destabilizing (Ang-2) mediators 
(Fig. 1h).

Profiles of divergent immune activation 
and endothelial dysfunction distinguish host subtypes 
throughout the course of illness
Nearly all mediators were generally higher in S2 through-
out the reported course of illness, with the exception of 
Ang-1, which appeared consistently higher in S1 (Fig. 2, 
Additional file  1: Figure E6). While concentrations of 
many mediators remained stably divergent, there were 
disproportionate decreases over time for IL-10 and 
sTNFR1 in S2. In contrast, concentrations of IP-10/
CXCL10, sIL2-Ra/sCD25, and Ang-2 disproportionately 
increased over time in S2.

Immune subtypes are associated with differential 
profiles of physiologic derangement, organ dysfunction, 
and mortality
In both the discovery and internal validation cohorts, 
Universal Vital Assessment (UVA) and Modified Early 
Warning Scores (MEWS), physiologic indices of clini-
cal severity feasible for use in resource-limited settings, 
were significantly higher among patients in S2, as were 
proportions of patients with ≥ 2 qSOFA criteria (Fig. 3a-
c, Additional file 1: Tables E2-E3). Consistently, patients 
in S2 also had more extensive organ dysfunction, includ-
ing higher prevalence of shock, acute respiratory failure, 
severe anemia, and encephalopathy (Fig.  3d, Additional 
file 1: Tables E2-E3).

Given consistent biological and clinical findings in the 
discovery and internal validation cohorts, we analyzed 
in-hospital and 30-day outcomes in a pooled sample of 
patients from both cohorts. In this analysis, mortality at 

30-days was significantly higher among patients in S2 
vs. S1 (34.6% vs. 16.3%, p = 0.001) (Fig. 3g). This finding 
was consistent when patients with indeterminate 30-day 
vital status were considered deceased (39.7% vs. 25.6%, 
p = 0.017) and in multivariable models adjusted for age, 
sex, duration of illness and multiple indices of clinical 
severity (Additional file 1: Table E6). In-hospital outcome 
and discharge functional status among hospital survi-
vors were also significantly worse among patients in S2 
(Fig.  3g). When patients in the both the discovery and 
internal validation cohorts were pooled and stratified by 
key pathogen groups, estimates of mortality at 30-days 
were consistently higher among patients in S2 (Fig. 3h).

Immune subtypes are differentiated primarily by severe 
HIV‑associated TB
Although we observed a range of infections across both 
subtypes, the prevalence of severe HIV-related infections, 
including disseminated HIV-associated TB (indicated by 
positive urine TB-LAM testing) [28], was significantly and 
consistently higher in S2 compared to S1 (Fig.  3e, f, Addi-
tional file 1: Tables E2-E3). Among patients in the discovery 
and internal validation cohorts with positive urine TB-LAM 
testing, those in S2 had higher grades of band intensity 
(median 3 [IQR; 1–3] vs. 1 [IQR 1–3]), which may corre-
spond to higher mycobacterial loads [29, 30].

Unsupervised clustering of whole‑blood RNA‑sequencing 
data reinforces a two‑host subtype partition differentiated 
by pro‑inflammatory innate immune activation, T‑cell 
exhaustion, aberrant NK‑cell expansion, and metabolic 
reprogramming
In unsupervised hierarchical clustering of whole-blood 
RNA-sequencing data (N = 128), a two-cluster (i.e. 

h Denominator is number with known HIV-infection prior to admission
i Positive result by sputum Xpert Ultra or smear or urine TB-LAM
j Unknown for 11 patients

Table 1  (continued)

(See figure on next page.)
Fig. 1  Soluble mediator-derived immune subtypes in discovery cohort. a Unsupervised hierarchical clustering of 14 serum mediators reflecting 
innate and adaptive immune activation, endothelial dysfunction, and fibrinolysis; dendrogram indicates cluster partition prior to k-means 
consolidation (N = 201). b Optimal cluster partitions suggested by cluster stability and validation indices as per NbClust package. c First two 
principal components plotted with the proportion of variance explained by each component; individuals stratified by cluster (subtype) assignment 
(N = 201). d Heatmap of z-score standardized soluble mediator concentrations, stratified by cluster (subtype) (N = 201). e Squared factor loadings 
for all serum mediators across the first two principal components in the discovery cohort; higher loading value indicates greater importance 
for each variable in explaining variance across each principal component (N = 201). f Importance of serum mediator variables in construction 
of gradient-boosted decision tree algorithm designed to predict cluster (subtype) assignment in discovery cohort (N = 201); 10 most important 
variables presented. Force-directed correlation networks based on the Fruchterman-Reingold method in discovery cohort subtype 1 g and subtype 
2 h; each mediator variable was set as a network node with between-mediator correlations significant at p-value ≤ 0.05 indicated by weighted 
edges (blue and green edges indicate positive correlation, red edges indicate negative correlation, edge width indicates strength of correlation) 
(N = 201). Nodes with blue and green shading indicate those mediators considered central in the subtype 1 and 2 networks, respectively, defined as 
those with ≥ 1 centrality metric (strength, closeness, or betweenness) above the standardized cluster mean (z-score > 0)
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Fig. 1  (See legend on previous page.)
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transcriptional subtype) model was determined to be 
optimal (Additional file 1: Figure E7A); 3,561 genes were 
differentially expressed across subtypes (Additional 
file 1: Figure E7B). Compared to transcriptional subtype 
1 (T1), transcriptional subtype 2 (T2) was characterized 
by increased expression of genes involved in pathogen 
recognition, pro-inflammatory cytokine and chemokine 
signaling, necroptosis, and inflammasome signaling 
and migration (Fig.  4a). Similar to soluble mediator-
derived S2, this marked pro-inflammatory response was 
accompanied by activation of transcription factor genes 
(STAT3, PPAR) integral to compensatory, anti-inflamma-
tory immune dampening. Concomitantly, we observed 
consistent evidence of T-cell exhaustion in T2, including 

increased expression of genes corresponding to PD-1/
PD-L1 inhibitory checkpoint signaling and decreased 
expression of genes integral in T-cell receptor signaling 
(Nur77), activation (CD28, iCos-iCosL, PKC), and prolif-
eration (OX40), and cytotoxic T-cell-mediated apoptosis 
(Fig. 4b).

Quantitatively, immune cell-type deconvolution analy-
sis inferred increased quantities of pro-inflammatory 
phagocytes and CD56(-)/CD16( +) NK-cells in T2, with 
concomitant CD4 and CD8 T-cell depletion (Fig.  4e, f ). 
Notably, CD56(-)/CD16( +) NK-cells are an aberrant, 
likely exhausted subset that expand during HIV-infection 
and exhibit limited capacity for cytotoxicity and cytokine 
(i.e. IFN-γ) production, while retaining capability to 

Fig. 2  Serum mediator concentrations over the reported course of illness in the discovery cohort, stratified by immune subtype. a–f 
Concentrations of soluble mediators over the reported course of illness, with robust regression lines and 95% confidence intervals, stratified by 
immune subtype (N = 198; 1 patient with unknown illness duration, 2 patients with extreme outliers in illness duration excluded). For example, an 
individual data point corresponding to “day 0” represents the serum mediator concentration for a patient who was admitted to hospital on the day 
of illness onset, while that corresponding to “day 5” represents a patient who was admitted to hospital on day 5 of illness
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secrete pro-inflammatory chemokines such as MIP-1β/
CCL4 [31, 32].

Metabolically, patients in T2 showed evidence of 
arrested cell growth and autophagy (Fig.  4c), with con-
comitant hypoxia-mediated metabolic reprogram-
ming including a switch to glycolysis and upregulation 

of bioactive, largely pro-inflammatory lipid mediators 
(eicosanoids, sphingosine-1-phosphate). Patients in T2 
also showed increased expression of genes implicated 
in oxidative stress (NRF2), endothelial dysfunction and 
angiogenesis (inducible nitric oxide [iNO], VEGF), 
with decreased expression of genes corresponding to 

Fig. 3  Illness severity scores, distributions of organ failures and pathogens, and outcomes stratified by immune subtypes. a–c Modified Early 
Warning Score, Universal Vital Assessment score, modified systemic inflammatory response syndrome [mSIRS], and quick Sepsis-related Organ 
Failure assessment [qSOFA] scores stratified by immune subtype in the discovery cohort; p-values in 3C represent Chi-squared test with continuity 
correction (N = 201). d Chord plot indicating proportion of patients with specific organ failures across each subtype in the discovery cohort; a 
wider chord band indicates a greater proportion of patients with each corresponding organ failure (N = 201, proportions in subtype 2 vs. 1 as 
follows: shock: 17.7% vs. 10.5%; acute respiratory failure: 21.9% vs. 17.1%; severe anemia: 26.0% vs. 13.3%; encephalopathy: 25.0% vs. 15.2%). e 
Chord plot indicating proportion of patients with specific infections across each subtype in the discovery cohort; a wider chord band indicates 
a greater proportion of patients with each corresponding infection (N = 201, proportions in subtype 2 vs. 1 as follows: HIV: 65.6% vs. 42.0%, 
tuberculosis: 27.1% vs. 8.6%, malaria: 24.5% vs. 14.6%, influenza: 4.5% vs. 10.5%). f Proportions of patients with known HIV-infection status (N = 199), 
HIV-associated TB (N = 199), and positive urine TB-LAM results (among those tested, N = 83) across each immune subtype in the discovery cohort. 
g In-hospital outcome (N = 288), impaired functional status [Karnofsky Performance Status; KPS] among hospital survivors (N = 246), and 30-day 
vital status (N = 260) across each subtype in a pooled cohort of patients from the discovery and internal validation cohorts; p-values in 3F and 3G 
represent Chi-squared test with continuity correction. h Forest plot indicating univariable (unadjusted) odds ratios for in-hospital outcome and 
30-day mortality among patients in subtype 2 vs. subtype 1, stratified by key pathogen groups in pooled discovery and internal validation cohort 
[patients with influenza omitted given small number of events in that pathogen group; for visualization, upper limit of 95% confidence interval for 
30-day mortality truncated at 15 for patients with malaria (upper limit 27.57)
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Fig. 4  Biological pathway analysis and immune cell-type deconvolution of transcriptional subtypes. a–d Ingenuity Pathway Analysis of canonical 
signaling gene sets differentially enriched across transcriptional subtypes based on log-fold change ≥|1| and Benjamini–Hochberg adjusted 
p-value ≤ 0.01; Z-score indicates up- versus down-regulation of signaling gene sets in subtype 2 vs. 1 (N = 128). e Relative quantities of immune 
cell-types inferred across subtypes based on ImmQuant digital cell quantification deconvolution; red shading indicates a higher inferred quantity 
of cell-type in subtype 2 vs. 1 based on log-fold change; blue shading indicates a lower inferred quantity of cell-type in subtype 2 vs. 1 based on 
log-fold change (N = 128). f Hematopoietic lineage plot with relative quantities of immune cell-types inferred across subtypes based on ImmQuant 
digital cell quantification deconvolution (N = 128); intensity of red shading indicates a higher inferred quantity of cell-type in subtype 2 vs. 1 based 
on log-fold change; intensity of blue shading indicates a lower inferred quantity of cell-type in subtype 2 vs. 1 based on log-fold change
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microvascular-protective endothelial NO (Fig. 4d). In T2, 
which had higher prevalence of shock, we also observed 
decreased expression of genes involved in maintaining 
vascular tone (endothelin-1, apelin, adrenomedullin), 
with increased expression of genes involved in restora-
tion and maintenance of the endothelial glycocalyx (hep-
aran, dermatan, chondroitin sulfates).

Transcriptional subtypes are differentiated by severe 
HIV‑associated TB, organ dysfunction, and mortality
Consistent with our immune mediator analyses, physi-
ologic derangement was more severe in T2, as indicated 
by higher MEWS and UVA scores and a greater propor-
tion of patients with qSOFA score ≥ 2 (Fig.  5a–c, Addi-
tional file  1: Table  E7). Compared to T1, patients in T2 

Fig. 5  Illness severity scores, distributions of organ failures and pathogens, and outcomes stratified by transcriptional subtypes. a–c Modified 
Early Warning Score, Universal Vital Assessment score, modified systemic inflammatory response syndrome [mSIRS], and quick Sepsis-related 
Organ Failure assessment [qSOFA] scores stratified by transcriptional subtype; p-values in 5C represent Chi-squared test with continuity correction 
(N = 128). d Chord plot indicating proportion of patients with specific organ failures across each transcriptional subtype; a wider chord band 
indicates a greater proportion of patients with each corresponding organ failure (N = 128, proportions in subtype 2 vs. 1 as follows: shock: 21.4% 
vs. 11.0%; acute respiratory failure: 35.7% vs. 20.0%; severe anemia: 28.6% vs. 21.0%; encephalopathy: 25.0% vs. 12.0%). e Chord plot indicating 
proportion of patients with specific infections across each transcriptional subtype; a wider chord band indicates a greater proportion of patients 
with each corresponding infection (N = 128, proportions in subtype 2 vs. 1 as follows: HIV: 75.0% vs. 48.5%; tuberculosis: 35.7% vs. 10.0%; malaria: 
11.5% vs. 24.5%; influenza: 0.0% vs. 2.4%). f Proportions of patients with HIV-infection (N = 127), HIV-associated TB (N = 127), and positive urine 
TB-LAM results (among those tested, N = 55) across each transcriptional subtype. g In-hospital outcome (N = 128), impaired functional status 
[Karnofsky Performance Status; KPS] (N = 108) among hospital survivors, and 30-day vital status across each transcriptional subtype (N = 117); 
p-values in 5F and 5G represent Chi-squared test with continuity correction. h Forest plot indicating univariable (unadjusted) odds ratios for 
in-hospital outcome and 30-day mortality among patients in transcriptional subtype 2 vs. subtype 1, stratified by key pathogen groups [patients 
with influenza omitted given small number of events in that pathogen group, odds ratio for in-hospital outcome omitted for patients with no 
pathogen detected as all events in transcriptional subtype 1; for visualization, upper limit of 95% confidence interval for in-hospital outcome 
truncated at 15 for patients with HIV-associated TB (upper limit 29.76) and malaria (upper limit 51.46), as well as for 30-day outcome for patients 
with no pathogen identified (upper limit 38.39) and malaria (upper limit 34.67)
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had higher prevalence of shock, acute respiratory failure, 
severe anemia, and encephalopathy (Fig.  5d, Additional 
file 1: Table E7). Patients assigned to T2 were predomi-
nantly HIV-infected with advanced immunosuppression 
(HIV clinical stage 3 or 4), severe and often disseminated 
TB, and less frequent malaria (Fig. 5e, f, Additional file 1: 
Table E7). Similar to immune mediator subtypes, patients 
in T2 with positive TB-LAM results had higher band 
grade intensities than those in T1 (median 3 [IQR 1–3] 
vs. 1 [IQR 1–1]).

Mortality at 30-days was significantly higher among 
patients assigned to T2 vs. T1 (44.0% vs. 20.7%, p = 0.035) 
(Fig.  5g, Additional file  1: Table  E8). This finding was 
consistent when patients with indeterminate 30-day 
vital status were considered deceased (50.0% vs. 27.0%, 
p = 0.038), and in multivariable models adjusted for 
age, sex, illness duration and severity (Additional file  1: 
Table E8). For patients discharged alive, those in T2 were 
significantly more likely to have impaired functional sta-
tus (Fig. 5g). When patients were stratified by pathogen 
groups, estimates of mortality at 30-days were consist-
ently higher among those in T2 (Fig. 5h).

Subtype‑specific prevalence of malaria varies by immune 
compartment but is consistent for HIV‑associated TB
Among the 122 patients for whom both soluble media-
tor and RNA-sequencing data were available, 75 (62%) 
were assigned to mediator- and transcriptionally-derived 
subtypes with similar immunological features (i.e. con-
sistently assigned to relatively hyperinflammatory [S2, 
T2] vs. hypo-inflammatory [S1, T1] immune media-
tor and transcriptional subtypes) and 47 (38%) were 
assigned to dissimilar subtypes (Additional file 1: Figure 
E8A, Table E9). Although the proportion of HIV-infected 
patients with more advanced immunosuppression (clini-
cal stages 3 and 4) was highest in T2, prevalence of severe 
HIV-related infections, including HIV-associated TB, 
was consistently higher in mediator-derived and tran-
scriptional hyperinflammatory subtypes (Additional 
file 1: Tables E2-E3, E9 and Figures E8B). In contrast, the 
prevalence of malaria varied substantially across each 
approach, with malaria prevalence of 24.5–40% in medi-
ator-derived hyperinflammatory subtypes (S2) and 11.5% 
in the hyperinflammatory, T-cell exhausted transcrip-
tional subtype (T2) (Additional file 1: Table E7 and Figure 
E8C).

Discussion
Among adults hospitalized with suspected sepsis in 
Uganda, we identified distinct immune subtypes defined 
by differential activation of pro-inflammatory innate and 
adaptive immune pathways, with transcriptional evi-
dence of T-cell exhaustion, aberrant NK-cell expansion, 

and hypoxia-induced metabolic reprogramming accom-
panying the hyperinflammatory subtype. Immune sub-
types defined by upregulation of these pathways were 
consistently associated with severe and often dissemi-
nated HIV-associated TB as well as more extensive organ 
dysfunction and worse clinical outcomes. Our results 
highlight unique host- and pathogen-driven features 
of sepsis immunopathology in sub-Saharan Africa, and 
reinforce the need to develop and test more biologically-
informed treatment strategies in the region, including 
those incorporating immunomodulation.

Despite advances towards identifying more precise 
therapeutic targets and higher-risk, treatment-responsive 
sepsis subgroups in HICs, biological heterogeneity inher-
ent to sepsis in low-income-settings remains unexplored 
[5–10, 33, 34]. Here, we show that sepsis host response 
subtypes differentiated by activation of key immunomet-
abolic pathways are present in a generalizable SSA setting 
and associated with unique microbiological and prognos-
tic features. If replicated elsewhere, these host subtypes 
could conceivably be leveraged to inform more locally-
relevant models of sepsis immunopathology and targeted 
immunomodulatory therapies. For example, while over 
50 clinical trials of corticosteroids in sepsis and septic 
shock have been conducted in HICs (primarily in the 
context of mitigating potential adrenal insufficiency), 
none have been conducted in SSA, with guidance on 
their use in low-income settings driven by expert opin-
ion [35, 36]. Accordingly, there is a need to further evalu-
ate the role of these low-cost immunomodulatory agents 
in sepsis management in SSA, in parallel with continued 
efforts to precisely define therapeutically exploitable 
pathways.

In HICs, studies comparing sepsis host response pro-
files among patients with different causative pathogens 
have reported conflicting results [37]. While several 
have found host profiles to be consistent across varied 
microbiological etiologies and sites of infection [37–
39], others identified source-specific heterogeneity in 
the host response [40]. Across soluble mediator- and 
transcriptionally-derived immune subtypes identi-
fied in our Ugandan cohort, the prevalence of severe 
HIV-related infections, including frequently dissemi-
nated TB, was consistently higher in those defined by 
greater pro-inflammatory innate immune activation, 
aberrant NK-cell expansion, and T-cell exhaustion. 
Despite the disproportionate burden of sepsis among 
HIV-infected adults in SSA, little remains known about 
the immunopathology of HIV-associated sepsis in the 
region, of which disseminated TB is a leading cause [3, 
41, 42]. Independent of critical illness, HIV-infected 
adults in SSA show evidence of persistent monocyte/
macrophage activation and systemic inflammation, 
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some of which persists despite antiretroviral therapy 
(ART) and viral suppression [43]. HIV-related acti-
vation of monocytes/macrophages may also induce 
of a state of hyperresponsive immune priming that 
precipitates disproportionate release of pro-versus 
anti-inflammatory cytokines following pathogen stimu-
lation [32]. Collectively, our observations of a high-risk, 
HIV-predominant host subtype defined by amplified 
pro-inflammatory innate immune activation and NK- 
and T-cell exhaustion highlight the need to evaluate 
the role of immunomodulatory agents in conjunction 
with prompt initiation or continuation of ART among 
patients with HIV-associated sepsis in SSA, in parallel 
with efforts to optimize antimicrobial strategies for TB 
and other high-burden co-infections [44, 45].

Although the prevalence of severe HIV-associated 
infections was consistently higher in immune media-
tor and transcriptionally-derived hyperinflamma-
tory subtypes, subtype-specific prevalence of malaria 
varied, with higher prevalence in mediator-derived 
hyperinflammatory subtypes. Nonetheless, patients 
with malaria assigned to hyperinflammatory subtypes, 
which showed concomitant endothelial dysfunction, 
had consistently poorer outcomes. While end-organ 
sequestration due to microvascular obstruction and 
endothelial dysfunction are established pathobiological 
mechanisms in severe malaria, the role of inflammatory 
mediators is less well-defined [46]. Consistent with our 
data, prior studies have identified imbalances between 
pro- and anti-inflammatory mediators among patients 
with severe falciparum malaria at higher risk of organ 
dysfunction and death [46, 47]. Although prior tri-
als of immunomodulatory agents in severe falciparum 
malaria have not shown benefit [48], eventual stratifi-
cation of trial populations based on immune-inflam-
matory subtypes could conceivably be used to enhance 
prognostic and predictive enrichment when evaluating 
new agents [48].

Our study has limitations. First, our findings are 
derived from a single-center cohort of medical ward 
patients and require replication in other geographic and 
clinical care settings in SSA. Second, although serum 
mediator samples were available for nearly all patients 
(96%), whole-blood RNA samples were available from 
approximately 43%. Third, as we were unable to isolate 
peripheral-blood-mononuclear-cells given resource-lim-
itations at our study site, we performed computational 
deconvolution analyses to infer quantities of immune-cell 
subsets. Next, although rapid diagnostics for key patho-
gens were performed in the parent study based on WHO 
guidelines, we did not perform blood cultures. Lastly, the 
cross-sectional nature of our sample collection precludes 

determination of temporal stability of the identified host 
subtypes.

Conclusions
We have demonstrated the presence of immunopatho-
logically-distinct and clinically-meaningful host response 
subtypes among adults with suspected sepsis in Uganda. 
In conjunction with improvements in acute-care capac-
ity, future studies are needed to refine understanding of 
sepsis immunopathology in SSA with the goal of devel-
oping more locally-relevant, biologically-informed, and 
clinically-effective management strategies.
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