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Abstract 

Background:  Septic shock comprises a heterogeneous population, and individualized resuscitation strategy is of 
vital importance. The study aimed to identify subclasses of septic shock with non-supervised learning algorithms, so 
as to tailor resuscitation strategy for each class.

Methods:  Patients with septic shock in 25 tertiary care teaching hospitals in China from January 2016 to Decem-
ber 2017 were enrolled in the study. Clinical and laboratory variables were collected on days 0, 1, 2, 3 and 7 after 
ICU admission. Subclasses of septic shock were identified by both finite mixture modeling and K-means clustering. 
Individualized fluid volume and norepinephrine dose were estimated using dynamic treatment regime (DTR) model 
to optimize the final mortality outcome. DTR models were validated in the eICU Collaborative Research Database 
(eICU-CRD) dataset.

Results:  A total of 1437 patients with a mortality rate of 29% were included for analysis. The finite mixture modeling 
and K-means clustering robustly identified five classes of septic shock. Class 1 (baseline class) accounted for the 
majority of patients over all days; class 2 (critical class) had the highest severity of illness; class 3 (renal dysfunction) 
was characterized by renal dysfunction; class 4 (respiratory failure class) was characterized by respiratory failure; and 
class 5 (mild class) was characterized by the lowest mortality rate (21%). The optimal fluid infusion followed the resus-
citation/de-resuscitation phases with initial large volume infusion and late restricted volume infusion. While class 1 
transitioned to de-resuscitation phase on day 3, class 3 transitioned on day 1. Classes 1 and 3 might benefit from early 
use of norepinephrine, and class 2 can benefit from delayed use of norepinephrine while waiting for adequate fluid 
infusion.

Conclusions:  Septic shock comprises a heterogeneous population that can be robustly classified into five pheno-
types. These classes can be easily identified with routine clinical variables and can help to tailor resuscitation strategy 
in the context of precise medicine.
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Introduction
Septic shock is a leading cause of mortality and morbidity 
in the intensive care unit (ICU). The shock status should 
be corrected as soon as possible to prevent subsequent 
development of multiple organ dysfunctions [1–3]. The 
resuscitation of septic shock at the initial phase involves 
fluid infusion and use of vasoactive agents such as nor-
epinephrine, dopamine and dobutamine [4, 5]. Although 
the Surviving Sepsis Campaign guidelines recommend 
several goals (i.e., urine output, mean blood pressure and 
ScvO2) to guide resuscitation [6, 7], the specific strat-
egy must be individualized because the responses to a 
given intervention can vary greatly among septic shock 
patients. For example, some patients with sepsis-induced 
acute kidney injury may respond well to fluid challenge, 
while others may further develop renal failure after fluid 
resuscitation [8, 9]. The clinical heterogeneity must be 
accounted for in both clinical practice and clinical trial 
design. Since sepsis and/or septic shock is a heteroge-
neous clinical syndrome, many clinical trials targeting 
sepsis population usually result in neutral findings [2, 
10, 11]. In these trials, some patients may benefit from 
a certain intervention, but others will be harmed by the 
intervention, resulting in a neutral effect in the overall 
population. Thus, numerous efforts have been made to 
explore the heterogeneity of sepsis.

Sepsis has been found to be consisted of several phe-
notypes, though specific class membership assignments 
are different across studies [12–18]. By using clinical trial 
data from 1696 patients, Gårdlund B and colleagues iden-
tified six classes of septic shock [19]. Alternatively, the 
use of temperature trajectory was able to identify four 
classes of sepsis [20]. The identified classes were inves-
tigated for their responses to different treatments. Our 
previous results showed that these clinical subclasses 
have different responses to the amount of fluid infu-
sion [14]. By utilizing randomized clinical trial data, the 
proportion of RCTs reporting benefit, harm or no effect 
changed considerably by varying the proportion of sub-
classes [21]. These results indicated that the subclasses 
of sepsis should be considered in designing clinical tri-
als because of their differing responses to fluid strategies. 
However, previous studies primarily explored subclasses 
of sepsis using cross-sectional data, ignoring the transi-
tion pattern of classes and the sequential treatment deci-
sions. In real clinical practice, septic shock is managed 
with sequential treatment decisions. In other words, the 
treatment decision making in the current stage should 
consider not only the current status but also previous 

responses to the treatment. Unfortunately, such a clini-
cal practice pattern has not been formalized with math-
ematical modeling.

Previous studies have explored the feasibility of utiliz-
ing high-granularity dataset to develop sequential deci-
sion rules of resuscitation for septic shock. For example, 
Komorowski M and colleagues developed a reinforce-
ment learning algorithm to determine the sequential 
rules of treatment strategy [22]. Our study group utilized 
dynamic treatment regime (DTR) model to develop a 
sequential treatment strategy [23]. However, these mod-
els are of high granularity with limited explainability. 
To make the model more explainable, the present study 
firstly classified septic shock into several classes by using 
non-supervised learning algorithms. Then, the classifica-
tion system was integrated in a DTR model to develop a 
sequential treatment rule for fluid volume and vasopres-
sor dosing [24]. The optimal treatment strategy was com-
pared with the actual strategy through days 0–7, and risk 
factors for fluid overload and norepinephrine overdosing 
were explored. We hypothesized that several classes of 
septic shock could be robustly identified and DTR model 
was able to identify optimal treatment strategy for these 
classes. The differences between actual and optimal treat-
ment strategy varied across different classes.

Methods
Study design and setting
The study was conducted in 25 tertiary care teaching 
hospitals in China from January 2016 to December 2017. 
Participants were retrospectively enrolled by reviewing 
the electronic medical records, and the patients were 
followed up during the hospital stay. A site investigator 
was responsible for this study in each ICU. Additionally, a 
clinical research coordinator (CRC) was assigned to each 
hospital to ensure the quality of data collection. The study 
was approved by the ethics committee of the 8th Medical 
Center of General Hospital of Chinese People’s Libera-
tion Army (approval no. 309201906171117). The written 
informed consent was waived by the ethics committee 
because the study did not involve any interventions. Data 
were deidentified and stored in an encrypted computer. 
This study was registered on the Chinese Clinical Trial 
Registry (Registration No. ChiCTR1900024418).

Participants
Sepsis was defined as suspected or documented infection 
plus an increase in the Sequential [Sepsis-related] Organ 
Failure Assessment (SOFA) score of 2 points or more. 
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Baseline SOFA score was extracted from past medical 
history. SOFA score was assumed to be 0 if a subject had 
no known comorbidities or baseline laboratory measure-
ments. Patients with septic shock were then identified by a 
vasopressor requirement to maintain a mean arterial pres-
sure of 65 mmHg or greater and serum lactate level greater 
than 2 mmol/L (> 18 mg/dL) in the absence of hypovolemia 
(e.g., as determined by the CRCs from participating center 
based on clinical findings such as increased HR, low CVP, 
decreased blood pressure and pale, cool and clammy skin) 
[25]. Patients were enrolled if they had septic shock on 
ICU admission. Exclusion criteria included pregnancy, age 
younger than 18 years old, terminal illness or malignancy 
with do-not-resuscitate order, concomitant acute myocar-
dial infarction or pulmonary embolism with hemodynamic 
compromise, conditions of immunodeficiency (i.e., hema-
tological malignancy, neutropenia, organ transplantation) 
and surgical source of infection not controlled.

Variables
Clinical and laboratory variables were collected on days 0, 
1, 2, 3 and 7 after ICU admission. For numeric variables, 
the minimum and maximum values during each of these 
days were collected. Demographic and baseline clinical 
data included age, gender, type of patient (elective surgery, 
emergency surgery, non-surgical), weight on admission, 
comorbidity and site of infection (abdominal, thorax, brain, 
blood stream, soft tissue and urinary tract infection). Vital 
signs of body temperature, arterial blood pressure, heart 
rate and respiratory rate were recorded. Acute physiology 
and chronic health evaluation (APACHE) II score was cal-
culated within 24 h after ICU admission. Laboratory vari-
ables included pH, HCO3, serum lactate, hemoglobin (HB), 
hematocrit (HCT), PaCO2, P/F ratio, base excess (BE), 
platelet count, red blood cell distribution width (RDWCV), 
serum creatinine and total bilirubin. Fluid intake volume 
was calculated by summing up all crystalloids, colloids, 
blood products, nasogastric (NG) water, NG feed, paren-
teral nutrition and fluid intake associated with IV drugs 
administration. Fluid intake and output were measured 
on the daily basis. Vasopressors including norepinephrine, 
epinephrine, dopamine and dobutamine were recorded. 
Vasopressors were converted to equivalent dose of norepi-
nephrine by the equation (all in mcg/kg/min, except vaso-
pressin in units/min) [26]:

Patients with 20% or more of missing values were 
excluded from analysis. For other patients with missing 

Norepinephrin eequivalent = Norepinephrine + Epinephrine

+ Phenylephrine/10 + Dopamine/100

+ Metaraminol/8 + Vasopressin × 2.5+ Angiotensin II× 10.

values, the longitudinal data were imputed by firstly 
applying last observation carried forward (LOCF) and 
then next observation carried backward (NOCB) meth-
ods [27].

Classes of septic shock
The classes of septic shock were explored by using finite 
mixture modeling (FMM) by assuming Gaussian dis-
tributions of feature variables, and variances were con-
strained to be equal across classes, and covariances were 
fixed to 0 (Fig. 1). Correlation between feature variables 
was examined using Pearson’s correlation analysis. We 
removed highly correlated variables by domain knowl-
edge. Candidate variables representing several key patho-
physiological domains were included for FMM, such as 
baseline demographics (age, weight), disease severity 
(APACHE II), vital signs (SBP, DBP, HR, temperature, 
RR), tissue perfusion (lactate), internal environment (BE, 
pH, HCO3), respiration (PaCO2, PaO2, PF), inflammatory 
responses (CRP, RDWCV), hematology (platelet) and 
renal function (urine output, creatinine). PaO2, CRP and 
DBP were removed due to their correlation with other 
variables with correlation coefficient > 0.7. The FMM was 
fit to the combined dataset of feature vectors from all 
patients across days 0, 1, 2, 3 and 7, while allowing class 
transition across ICU days. The best number of classes 
was determined by both statistics and clinical impor-
tance. Lower values of AIC and SABIC and higher values 
of entropy were considered as better model fit. Bootstrap 
likelihood ratio test was performed to compare whether 
k-class model was better than (k −  1)-class model [28]. 
The minimum number of patients should be over 4% of 
the entire study population. The minimum probability 
of assigning to one class should be over 0.8; otherwise, 
the class membership is considered as unstable. The best 
number of classes was also confirmed by the k-means 
clustering analysis. Statistics such as cubic clustering cri-
terion (CCC), Calinski and Harabasz (CH) index, Davies 
and Bouldin (DB) index, Hartigan, Krzanowski and Lai 
(KL) index, Marriot, Rubin and TraceW were reported 
because they were easily implemented in the package 
NbClust (V3.0) [29]. PCA was also used to visualize the 
identified classes to show that the classes of septic shock 
can be visualized in lower-dimensional space.

Characteristics of each class were compared using 

Kruskal–Wallis rank sum test or analysis of vari-
ance (ANOVA) for numeric data, and Chi-square test 
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or Fisher’s exact test for categorical data [30]. Inter-
actions between class membership and fluid vol-
ume ( Class× Fluid Volume ) or norepinephrine use 
( Class×NorepinephrineDose ) were explored in two 
multivariable Cox regression models with time-vary-
ing covariates. Other covariates including comorbid-
ity, APACHE II, urine output, creatinine and age were 
adjusted for. A statistically significant interaction might 
indicate potential differing effect size of the intervention 
(either fluid volume or norepinephrine equivalence dose) 
on survival outcome in different classes.

Dynamic treatment regimen modeling
Optimal dynamic treatment regimes can be inferred from 
observational medical data using reinforcement learning 
algorithm [31, 32]. Alternatively, DTR can also be used 
to estimate optimal treatment strategy across multiple 
treatment stages, so that the final clinical outcome can be 
optimized [33, 34]. In this study, the treatments are con-
tinuous variables including fluid volume intake and nor-
epinephrine dosing. The regression-based method was 
used for estimating the optimal dosing strategy across 

days 0, 1, 2, 3 and 7 after ICU admission. More specifi-
cally, the mortality outcome E(Y |x, a) was modeled in 
terms of treatment-free model f

(

xβ;β
)

 and a blip func-
tion γ

(

xψ , a;ψ
)

:  E(Y |x, a) = f
(

xβ;β
)

+ γ
(

xψ , a;ψ
)

 , 
where x is a vector of covariates and a is the treatment 
strategy. xβ and xψ are subsets of observed covari-
ates vector x . The blip function is parameterized in 
terms of ψ and characterizes the treatment effect. DTR 
model also requires specification of a treatment model, 
which is a propensity score for receiving treatment: 
π(a|x) = fA|x(a|x) . The goal of parameter estimation is to 
optimize the final outcome Y  in a sequential manner. The 
estimation was performed by dynamic weighted ordi-
nary least squares [33, 34]. The results of the DTR model 
would return individualized optimal dosing strategy for 
both fluid volume and norepinephrine dosing across 
days 0, 1, 2, 3 and 7. Then, the actual treatment strategy 
was compared to the optimal treatment strategy. Fluid 
overloading was defined as those receiving > 1000  mL/
day than the optimal volume, and norepinephrine over-
dosing was those receiving > 0.1 mcg/kg/min than the 
optimal dose. Risk factors for fluid and norepinephrine 

Fig. 1  Flowchart of patient enrollment and schematic illustration of analysis workflow. A total of 1437 septic shock patients were analyzed. 
The first step is to identify classes of septic shock by both finite mixture modeling and K-means clustering. Clinical characteristics of each class 
were compared. Interaction between class membership and fluid volume or epinephrine dose was explored in a multivariable Cox model with 
time-varying covariates. A significant effect of interaction means different therapeutic effects across classes. Another thread of our analysis is to 
estimate optimal fluid volume and norepinephrine dose using dynamic treatment regimen. The key of the modeling is to construct a blip function 
that can help to tailor optimal dosing strategy based on current patient status and historical response to the intervention. It returns a sequential 
decision policy to optimize the final outcome. The optimal fluid volume or epinephrine dose was then compared with the actual strategy, and 
relevant risk factors can be explored for fluid overload or norepinephrine overdosing
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overdosing were explored by using stepwise backward 
elimination and forward selection logistic regression 
models with AICs. (More details are given in Additional 
file  1.) All analyses were performed using R (version 
4.0.1), and codes are available in Additional file 2.

External validation in the eICU‑CRD dataset
The eICU Collaborative Research Database (eICU-CRD), 
which was a multi-center intensive care unit (ICU) data-
base with high-granularity data for over 200,000 admis-
sions to ICUs monitored by eICU Programs across the 
USA, was utilized for model validation [35]. Septic shock 
patients were defined as those with the admission diag-
nosis of sepsis plus the use of vasopressor including 
norepinephrine, dopamine and epinephrine. The same 
feature variables were used for FMM and DTR modeling. 
The classification of septic shock was validated in the 
eICU-CRD database. The cluster membership for new 
samples in eICU-CRD was determined by the highest 
posterior probability of the class membership. The FMM 
can also be helpful for the application our model to exter-
nal dataset. Downstream DTR validation was performed 
by predicting the optimal treatment strategy for patients 
in the eICU-CRD. Then, the optimal strategy was vali-
dated by the fact that it was associated with the lowest 
mortality.

Results
Participants
A total of 4024 patients with septic shock were screened 
during the study period. After application of exclusion 
criteria, 1459 patients were enrolled for the study. How-
ever, 22 patients were further excluded because of pre-
defined proportion of missing values. As a result, we 
included 1437 patients for subsequent analysis (Fig.  1). 
The median age of the study population was 67  years 
(IQR 54 to 78  years). There were more male (912/1437, 
63%) than female patients. The median APACHE II was 
22 (IQR 16–27). The primary site of infection included 
thorax (48%), abdomen (38%), UTI (7%) and soft tissue 
(3%). Medical patients accounted for 56% of all patients, 
followed by emergency surgery (32%) and elective sur-
gery patients (12%).

Classes of septic shock
A total of 17 features (age, weight, HR, APACHE II, SBP, 
temperature, pH, HCO3, LAC, BE, PF, PaCO2, HCT, 
platelet, RDWCV, creatinine, urine) were included 
for FMM. The values of AIC and SABIC declined form 
2-class to 8-class models, but the smallest class con-
tained less than 3% patients from 6-class to 8-class mod-
els (Fig.  2B). Thus, the 5-class model was considered as 
the best model. Furthermore, the 5-class model showed 

an entropy of 0.849, which was among the largest values. 
The 5-class model was confirmed by k-means cluster-
ing analysis (Fig. 2A). The class membership transition is 
shown in Fig. 2C, showing that patients can move from 
class to class over ICU days. Patients transitioned to 
class 1 were more likely to survive on hospital discharge. 
The five classes could be well separated in the first three 
principal components (explaining 15.6%, 10.3% and 8.7% 
of the total variance, Fig. 2D). Characteristics of the five 
classes are visualized in Fig. 2E, and statistical compari-
sons are shown in Table  1. Class 1 is the largest class 
over all study days (it is not the largest class on day 0 as 
shown in Table  1) with all clinical features around the 
population mean (the baseline class). Class 2 is charac-
terized by poor tissue perfusion (high serum lactate level: 
11.10; IQR 9.05–14.25 mmol/L) and the highest mortal-
ity rate (41%) and can be called the critical class. Class 
3 is characterized by highest serum creatinine and meta-
bolic acidosis and can be called renal dysfunction class 
(Fig.  2E). Class 4 is characterized by the highest PaCO2 
(60; IQR 50–77 mmHg) and low PF ratio (169; IQR 118–
232  mmHg) and can be designated as respiratory fail-
ure class. Class 5 is characterized by young age (42; IQR 
30–51 years) and low mortality (21%) and can be consid-
ered as the mild class.

Differing therapeutic effect in classes of septic shock
In multivariable Cox regression models with time-vary-
ing covariates, we included interaction terms between 
class membership and fluid intake or norepinephrine 
dosing. The results showed that the main effect of fluid 
intake volume was positively associated with increased 
risk of death (HR 1.15; 95% CI 1.04–1.29; p = 0.009). 
There were significant interactions between class mem-
bership and fluid volume intake. While more fluid intake 
was associated with increased risk of death in class 4, 
more fluid intake was associated with reduced risk of 
death in class 2 (HR 0.81; 95% CI 0.69–0.95; p = 0.009). 
The effect of fluid volume on survival outcome is less 
prominent in other classes (Fig.  3A, C). Larger doses 
of norepinephrine were consistently associated with 
increased risk of mortality (HR 3.17; 95% CI 2.06–4.89; 
p < 0.001), and there was significant interaction between 
class 3 and norepinephrine dose (HR 0.28; 95% CI 0.14–
0.58; p < 0.001; Fig. 3B, D).

Optimal treatment strategy estimated by DTR
The optimal fluid volume and norepinephrine dosing 
were estimated using the DTR model. The predicted clus-
ter labels by FMM were included in the DTR’s blip func-
tion. The actual and optimal treatment strategies were 
compared (Fig. 4A). The coefficients for the cluster labels 
2, 3, 4 and 5 (one-hot encoding) in the blip function were 
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0.0575 (95% CI 0.0234–0.0876), 0.0453 (95% CI 0.0241–
0.0761), −  0.0115 (95% CI: −  0.0761 to −  0.0034) and 
−  0.0126 (95% CI −  0.0616 to −  0.0021), respectively. 
Interestingly, the optimal fluid volume estimated by the 

DTR model showed a pattern with initially large vol-
ume over the first 2  days, followed by reduced volume 
requirement. This pattern is consistent with the concept 
of resuscitation and de-resuscitation in the management 
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Table 1  Comparisons of clinical and laboratory variables across classes on day 0

Variables Total (n = 1437) 1 (n = 380) 2 (n = 115) 3 (n = 723) 4 (n = 81) 5 (n = 138) p

Age (years), 
median (IQR)

67.00 (54.00, 
78.00)

72.50 (62.00, 
82.00)

65.00 (55.00, 
75.50)

67.00 (55.50, 
77.00)

77.00 (61.00, 
84.00)

42.00 (30.00, 
51.00)

< 0.001

Gender, male (%) 912 (63) 245 (64) 71 (62) 450 (62) 59 (73) 87 (63) 0.425

Weight (kg), 
median (IQR)

64.00 (56.00, 
70.00)

64.00 (54.00, 
69.00)

64.00 (58.00, 
70.00)

64.00 (60.00, 
71.00)

62.00 (53.00, 
65.00)

65.00 (60.00, 
70.00)

< 0.001

Comorbidity, n (%) < 0.001

CRF 51 ( 4) 13 (3) 2 (2) 27 (4) 5 (6) 4 (3)

None 681 (47) 162 (43) 56 (49) 333 (46) 35 (43) 95 (69)

Diabetes 288 (20) 76 (20) 28 (24) 145 (20) 18 (22) 21 (15)

Hypertension 336 (23) 99 (26) 26 (23) 176 (24) 20 (25) 15 (11)

CAD 81 ( 6) 30 (8) 3 (3) 42 (6) 3 (4) 3 (2)

Site of infection, 
n (%)

< 0.001

Abdomen 544 (38) 112 (29) 46 (40) 332 (46) 7 (9) 47 (34)

Thorax 690 (48) 226 (59) 49 (43) 281 (39) 70 (86) 64 (46)

Brain 13 ( 1) 6 (2) 1 (1) 1 (0) 1 (1) 4 (3)

Blood 36 ( 3) 8 (2) 3 (3) 17 (2) 3 (4) 5 (4)

Soft tissue 50 ( 3) 7 (2) 6 (5) 26 (4) 0 (0) 11 (8)

UTI 104 ( 7) 21 (6) 10 (9) 66 (9) 0 (0) 7 (5)

Type, n (%) < 0.001

Medical 800 (56) 232 (61) 67 (58) 361 (50) 69 (85) 71 (51)

Elective surgery 179 (12) 52 (14) 15 (13) 89 (12) 3 (4) 20 (14)

Emergent surgery 458 (32) 96 (25) 33 (29) 273 (38) 9 (11) 47 (34)

Hours on day 0, 
median (IQR)

13.00 (9.00, 17.00) 13.50 (10.00, 
17.00)

12.50 (8.00, 19.00) 13.00 (9.00, 17.00) 13.40 (8.00, 18.00) 14.40 (10.62, 
17.88)

0.119

MV, n (%) 1227 (85) 329 (87) 104 (90) 600 (83) 78 (96) 116 (84) 0.007

APACHEII, median 
(IQR)

22.00 (16.00, 
27.00)

21.00 (14.00, 
26.00)

25.00 (19.00, 
30.00)

22.00 (17.00, 
28.00)

23.00 (17.00, 
26.00)

20.00 (14.00, 
24.75)

< 0.001

Use of norepi-
nephrine, n (%)

1259 (88) 312 (82) 108 (94) 659 (91) 65 (80) 115 (83) < 0.001

Maximum HR (/
min), Mean ± SD

122.25 ± 23.46 108.70 ± 21.08 133.97 ± 19.78 126.72 ± 22.63 119.22 ± 22.20 128.18 ± 21.39 < 0.001

Maximum SBP 
(mmHg), median 
(IQR)

132.00 (113.00, 
147.00)

137.00 (120.00, 
150.00)

128.00 (110.00, 
147.50)

130.00 (110.00, 
145.00)

136.00 (120.00, 
150.00)

130.50 (111.00, 
142.75)

0.001

Minimum SBP 
(mmHg), median 
(IQR)

87.00 (74.00, 
98.00)

91.00 (77.00, 
102.00)

83.00 (70.00, 
98.00)

86.00 (71.00, 
98.00)

88.00 (74.00, 
98.00)

89.00 (78.00, 
98.20)

0.002

Temperature (℃), 
median (IQR)

37.50 (36.90, 
38.40)

37.30 (36.80, 
37.80)

37.40 (36.70, 
38.50)

37.60 (37.00, 
38.50)

37.50 (37.00, 
38.20)

38.50 (37.60, 
39.20)

< 0.001

Minimum pH, 
median (IQR)

7.35 (7.28, 7.41) 7.40 (7.37, 7.45) 7.24 (7.14, 7.31) 7.32 (7.26, 7.37) 7.38 (7.30, 7.47) 7.41 (7.37, 7.45) < 0.001

Minimum HCO3, 
median (IQR)

20.60 (17.00, 
23.40)

23.20 (21.90, 
25.70)

15.30 (11.40, 
18.45)

18.00 (15.60, 
20.50)

34.30 (32.60, 
37.50)

23.10 (21.63, 
25.20)

< 0.001

Minimum BE, 
median (IQR)

− 4.20 (− 7.90, 
− 0.60)

− 0.70 (− 2.40, 
1.60)

− 11.00 (− 14.90, 
− 6.75)

− 6.90 (− 9.50, 
− 4.44)

8.90 (5.00, 12.60) − 0.80 (− 2.68, 
1.00)

< 0.001

Maximum lactate 
(mmol/L), 
median (IQR)

2.70 (1.80, 4.60) 1.90 (1.40, 2.50) 11.10 (9.05, 
14.25)

3.40 (2.10, 5.00) 1.90 (1.40, 2.90) 2.00 (1.63, 2.98) < 0.001

Minimum PF, 
median (IQR)

199.00 (135.17, 
258.00)

210.00 (160.00, 
280.00)

174.00 (99.50, 
219.91)

187.50 (130.00, 
250.00)

169.00 (117.83, 
232.00)

210.00 (153.32, 
297.79)

< 0.001

Maximum PaCO2 
(mmHg), median 
(IQR)

39.00 (33.00, 
46.00)

40.00 (35.00, 
44.05)

41.00 (31.50, 
47.60)

36.20 (30.25, 
44.00)

60.00 (50.00, 
77.00)

38.00 (33.00, 
42.80)

< 0.001
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of septic shock. However, there is large difference among 
these classes. Class 2 showed longer period of resuscita-
tion that significantly larger volume is required over the 
first 7 days than other classes. Norepinephrine was more 
likely to be overdosed on day 0 for class 2, while classes 1 
and 3 were more likely to be underdosed (Fig. 4E). Analy-
sis in the original dataset showed that smaller difference 
between actual and optimal dose resulted in a lower mor-
tality risk (Fig. 4B, D, F, H).

Risk factors for fluid and norepinephrine overdosing
To investigate risk factors for fluid overloading or nor-
epinephrine overdosing, logistic regression models 
were built. The results showed that greater values of 
heart rate (OR for each 10 beats/min increase: 4.38; 
95% CI 2.85–6.73; p < 0.001), class 3 (OR: 1.93; 95% 
CI 1.49–2.50; p < 0.001) and class 5 (OR 1.71; 95% CI 
1.27–2.31; p < 0.001) were associated with increased risk 
of fluid overloading (Fig. 4C). Class 3 (OR 0.27; 95% CI 
0.21–0.34; p < 0.001), body weight (OR for every 10-kg 
increase: 0.62; 95% CI 0.44–0.87; p = 0.007) and urine 
output (OR for every 100-mL increase: 0.82; 95% CI 
0.72–0.93; p = 0.001) were associated with decreased risk 
of norepinephrine overdosing (Fig. 4G).

The logistic regression models require the assump-
tion of a monotonic relationship between the depend-
ent variable and the outcome, and this assumption is 
often violated in practice. Thus, we further used XGboost 
to identify risk factors for fluid overloading or norepi-
nephrine overdosing [36]. The variable contribution to 
the model was explored by the SHapley Additive exPla-
nations (SHAP), in which the Shapley values calculate 
the importance of a feature by comparing what a model 
predicts with and without the feature [37]. ICU day was 
the most important variable predicting fluid overload. 
Patients in class 3 were more likely to receive fluid over-
load (the purple color indicates class 3 patients, and they 
contribute to increased risk of fluid overload as repre-
sented by the positive value on x-axis; Fig.  5A). SHAP 
values of individual features in predicting the risk of nor-
epinephrine overdosing (top 20 features are shown in the 
figure). Higher heart rate (purple color) was found to be 
associated with increased risk (positive SHAP value on 
x-axis) of norepinephrine overdosing (Fig. 5B).

External validation in eICU‑CRD database
A total of 5856 patients with septic shock on ICU admis-
sion were identified from the eICU-CRD database. The 
mortality rate was 26.7% (1582/5865). The FMM model 

Table 1  (continued)

Variables Total (n = 1437) 1 (n = 380) 2 (n = 115) 3 (n = 723) 4 (n = 81) 5 (n = 138) p

Hb (g/l), median 
(IQR)

103.00 (85.00, 
124.00)

97.00 (81.00, 
115.00)

100.00 (85.50, 
125.00)

107.00 (88.00, 
126.00)

107.00 (89.00, 
127.00)

105.50 (87.25, 
129.50)

< 0.001

Hct (%), median 
(IQR)

29.90 (26.30, 
36.10)

27.90 (26.00, 
32.90)

30.00 (26.30, 
36.65)

31.40 (26.30, 
37.25)

32.00 (26.30, 
38.90)

29.00 (26.30, 
36.50)

< 0.001

Platelet ( ×10
9/L ), 

median (IQR)
136.00 (81.00, 

212.00)
148.00 (89.75, 

214.25)
107.00 (47.00, 

182.00)
131.00 (75.00, 

200.00)
188.00 (122.00, 

267.00)
146.50 (90.50, 

236.75)
< 0.001

RDWCV, median 
(IQR)

14.00 (13.00, 
16.00)

14.00 (13.00, 
16.00)

14.00 (13.00, 
15.40)

14.00 (13.00, 
15.00)

14.00 (13.00, 
15.00)

14.00 (13.00, 
15.00)

0.108

Serum creatinine 
(mmol/L), 
median (IQR)

113.60 (71.00, 
203.00)

92.05 (61.86, 
134.85)

175.80 (105.65, 
265.48)

138.00 (87.74, 
236.15)

76.00 (51.80, 
121.00)

79.55 (56.08, 
115.84)

< 0.001

Intake volume 
(mL), median 
(IQR)

2866.00 (1900.00, 
3976.00)

2480.00 (1712.00, 
3457.25)

3667.00 (2102.50, 
5521.00)

2962.00 (1926.00, 
4045.00)

2571.00 (1806.15, 
3200.50)

3448.50 (2131.25, 
5115.50)

< 0.001

Output volume 
(mL), median 
(IQR)

1440.00 (800.00, 
2415.00)

1450.50 (863.00, 
2219.25)

1360.00 (480.00, 
2414.50)

1320.00 (745.00, 
2280.00)

1314.00 (628.00, 
1930.00)

2537.00 (1410.75, 
3545.00)

< 0.001

Urine output (mL), 
median (IQR)

970.00 (400.00, 
1695.00)

1150.00 (646.25, 
1801.25)

470.00 (206.00, 
1420.00)

795.00 (320.00, 
1422.50)

950.00 (515.00, 
1740.00)

1835.00 (1092.50, 
2990.00)

< 0.001

Hospital LOS, 
median (IQR)

19.00 (11.00, 
32.00)

20.50 (12.00, 
34.00)

19.00 (8.00, 36.50) 18.00 (10.00, 
30.00)

22.00 (14.00, 
36.00)

20.00 (12.00, 
34.75)

0.019

ICU LOS, median 
(IQR)

9.00 (5.00, 17.00) 10.00 (6.00, 21.00) 9.00 (5.00, 16.00) 8.00 (5.00, 15.00) 14.00 (7.00, 23.00) 10.00 (5.25, 18.75) < 0.001

Mortality, n (%) 423 (29) 120 (32) 47 (41) 193 (27) 34 (42) 29 (21) < 0.001

Bold significances are shown in the last column (p < 0.001)

All variables were recorded on day 0. LOS length of stay, IQR interquartile range, CRF chronic renal failure, CAD coronary artery diseases, UTI urinary tract infection, HR 
heart rate, SD standard deviation, ICU intensive care unit, RDWCV red blood cell distribution width, BE base excess, Hct hematocrit
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identified five classes of septic shock. The class member-
ship in the eICU-CRD dataset was also predicted using 
the FMM method, which showed similar class distribu-
tion in the eICU-CRD (Fig.  6A, B). Furthermore, the 
DTR model was used to predict optimal dosing of fluid 
and norepinephrine on the eICU database. The differ-
ences between actual versus optimal dosing were calcu-
lated. The result showed that larger absolute value of the 
difference between actual and optimal doses was associ-
ated with increased hospital mortality (Fig. 6C–F).

Discussion
The study identified five classes of septic shock that 
showed distinct clinical characteristics by using finite 
mixture modeling, which was further confirmed by 
k-means clustering. DTR model was employed to tailor 
individualized sequential treatment decisions, by esti-
mating the optimal fluid volume and norepinephrine 
dosing. The five classes are clinically relevant in that 
(1) they are easily identifiable by routine clinical vari-
ables with stable prediction probability (minimum class 
membership probability > 0.80); (2) the optimal resusci-
tation strategy, which was confirmed in an independent 
dataset, differed across the five classes; (3) the transition 
from resuscitation to de-resuscitation phase should be 
different across classes so as to achieve a desirable clini-
cal outcome; and (4) these classes showed differing risks 
of fluid overloading and norepinephrine overdosing. The 
system has important clinical implications that the het-
erogeneous septic shock population can be classified into 
subphenotypes and resuscitation strategy can be tailored 
by considering subphenotypes as well as their transitions 
across ICU days.

This study confirms previous findings that septic shock 
is a heterogeneous syndrome and can be classified into 
several stable subclasses [14, 19, 20]. The classification 
is stable in our multicenter cohort because both finite 
mixture modeling and k-means clustering arrive at the 
same number of classes. The minimum class membership 
probability is greater than 0.80. This study is different 

from previous studies that we focus solely on septic 
shock because we believe that this population requires 
urgent resuscitation and can benefit most from individu-
alized treatment regimen. By using multicenter clinical 
data, Seymour CW and colleagues identified four types 
of sepsis, namely the α , β , γ , δ phenotypes [21]. Septic 
shock is mostly in the δ phenotype, which is also associ-
ated with the highest mortality rate. From the perspective 
of immune responses, septic shock was classified into 
three subclasses in another study, but the small sample 
size prohibited finer classification [38]. Gårdlund and 
colleagues reported similar classes of septic shock. For 
example, the “uncomplicated septic shock” profile corre-
sponds to class 5 (mild class) in our study, and the “severe 
septic shock” profile corresponds to class 2 (critical class) 
[19].

In the DTR framework [3439, 4041], the optimal 
sequential resuscitation rules were estimated. Days 0–3 
were considered as resuscitation phase, and day 7 was 
considered as the de-resuscitation phase. Consistent with 
the concept of the “four D’s” of fluid therapy [42, 43], our 
DTR model showed that larger fluid infusion and appro-
priate dosing of norepinephrine were usually required to 
achieve a better clinical outcome at an early phase, and 
less fluid infusion was beneficial at the late phase. Our 
study also showed that specific dosing strategies were dif-
ferent among classes. For example, the de-resuscitation 
phase began on day 3 for class 1 but began on day 1 for 
class 3 (renal failure class). Class 3 is at increased risk of 
fluid overload because the injured kidney is unable to 
effectively maintain fluid balance. Thus, patients in this 
class are more sensitive to fluid therapy, which is sup-
ported by rapid drop in optimal fluid volume from day 0 
to day 1. Furthermore, class 3 is more likely to transition 
to other classes as it is the largest class at day 0, but the 
size decreases rapidly over time (Fig. 2C). The actual fluid 
volume was relatively low in class 4 (respiratory failure 
class), suggesting that physicians are aware of potential 
hazardous effect of fluid overloading for injured lungs 
[44–47].

(See figure on next page.)
Fig. 3  Multivariable Cox regression model with time-varying covariates. Relative hazard could be varying over time and our model reported the 
average value for a given dose. A Fluid volume and risk of mortality stratified by class membership. More fluid administration was associated with 
reduced risk of mortality in class 2 (Critical class). B Daily maximum dose of norepinephrine and hazard ratio. While more norepinephrine was 
associated with increased risk of mortality in overall population, greater dose of norepinephrine was associated with reduced risk of mortality in 
class 3 (respiratory failure class). The gray area indicates the 95% confidence interval, and the small bars on horizontal axis indicate sample points. 
C Multivariable regression model showed significant interaction between class membership and fluid volume. There was significant interaction 
between fluid intake and class 2 (critical class) membership (HR 0.81; 95% CI 0.69–0.95). D Larger dose of norepinephrine was associated with 
increased instantaneous hazard in the main effect (HR 3.17; 95% CI 2.06–4.89). There was significant interaction between class 3 and norepinephrine 
dose (HR for interaction: 0.28; 95% CI 0.14–0.58; p < 0.001). HRs for comorbidities were reported with the None comorbidity as reference. HR hazard 
ratio, CI confidence interval, CRF chronic renal failure, CAD coronary artery diseases, NorepiEq norepinephrine equivalence dose in mcg/kg/min, Cre 
creatinine in mg/dl, APACHEII Acute Physiology and Chronic Health Evaluation II, Intake Vol daily intake volume in liters
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There are numerous tools to evaluate fluid overload in 
clinical practice such as physical examination, chest radi-
ography, natriuretic peptides, thoracic ultrasound and 

bioelectrical impedance analysis [48]. But these methods 
are inaccurate and variable across individuals. This study 
estimated the optimal fluid volume in the framework of 
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Fig. 3  (See legend on previous page.)
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Fig. 4  Optimal resuscitation strategy estimated by DTR. A Comparisons between actual and optimal fluid volume over days. The optimal fluid 
strategy is consistent with the concept of resuscitation/de-resuscitation model, especially in class 1 (baseline class) and class 3 (renal dysfunction 
class). However, class 3 showed earlier de-resuscitation than class 1 (day 1 vs. 3). More fluid could be given on day 0 for classes 1 to 4, indicating 
that initial resuscitation was usually inadequate in clinical practice. B Impact of delta fluid intake on mortality estimated by a logistic regression 
model fitting on validation set. Delta fluid intake was calculated as the difference between actual and optimal fluid intake at patient • day level 
and was categorized into five levels: very low (<−1000 mL), low (− 1000 to − 500 mL), optimal (− 500 to 500 mL), high (500 to 1000 mL) and 
very high (> 1000 mL). Odds ratio was reported by using optimal as reference. C Risk factors for fluid overloading. D DTR internal validation was 
performed by examining the relationship between delta fluid intake and mortality outcome. The trained DTR model estimated optimal fluid intake 
for each subject in the dataset from the Chinese multicenter cohort and a logistic regression model was trained by including a quadratic term for 
delta fluid intake. The parabolic curve indicates that the lowest mortality can be obtained at an optimal fluid strategy. E Comparisons between 
actual and optimal norepinephrine dose over days, stratified by class membership. The optimal dose was larger than the actual dose on day 0 for 
classes 1, 3, 4 and 5, indicating early initiation of norepinephrine could be beneficial for most classes. However, class 2 (critical class) showed lower/
delayed initial dose would be beneficial. Combined with the result from fluid intake, it was deducible that initial large adequate fluid volume and 
delayed norepinephrine use were potentially beneficial for class 2. F Validation of the DTR model in the validation set by exploring the relative risk 
of mortality for different levels of delta norepinephrine dose. G Multivariable regression model exploring risk factors for norepinephrine overdose. H 
DTR model validation by examining the relationship between delta norepinephrine dose and mortality outcome
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DTR, which integrated many relevant clinical variables 
for model training, allowing for individualized fluid treat-
ment strategy. The DTR models were also well validated 
in an independent dataset. Some interesting risk factors 
such as body weight, urine output and PaCO2 were iden-
tified for fluid overloading. The body weight may not be a 
good marker to determine fluid dose because fluid reten-
tion is common in critically ill patients. Increased body 
weight is a sign of fluid overload, but in reality, physicians 
may prescribe too much fluid based on the formula for 
calculating fluid requirement. Furthermore, patients 
with high PaCO2 are more likely to have fluid overload 
because PaCO2 retention can be the result of severe 
ARDS and protective ventilation, in which the optimal 
fluid is usually conservative in order to improve clinical 
outcomes.

Norepinephrine is usually required to maintain blood 
pressure after fluid infusion. However, the timing and 
dosing of norepinephrine are largely based on subjective 
judgment. As compared to the real clinical practice in 
our participating hospitals, less norepinephrine and more 
fluids can be given to class 2 patients on day 0, in order to 
achieve a better clinical outcome. This is consistent with 
some observations that treatment strategy with more 
fluid volume and lower vasopressor dose at 0–6 h is asso-
ciated with improved mortality outcome [49, 50]. Patients 
in class 2 are characterized by profound hypotension and 
poor tissue perfusion. The use of norepinephrine may 
further reduce tissue perfusion when fluid infusion is 
inadequate. It is interesting to note that the norepineph-
rine dosing is similar between actual and optimal strat-
egy on day 1, which supports the well-accepted concept 
that adequate fluid infusion should be given before con-
sidering vasopressors. Results from observational studies 
showed that early norepinephrine use is associated with 
improved mortality outcome [51–54], which is further 
supported by a small RCT [55]. This is not contradictory 
to our results. The actual norepinephrine is underdosed 
on days 0 and 1 in classes 1 and 3 in our study. In other 
words, early larger dose of norepinephrine in these two 
classes could help improve outcomes. Since classes 1 
and 3 comprise the majority of septic shock population, 
it is not surprising that the undifferentiated septic shock 
patients enrolled in those trials can benefit from early 
vasopressor use.

There are several limitations that must be acknowl-
edged in the study. Although we tried to classify septic 
shock patients into five subclasses, the granularity may 
not be high enough to fully implement the individual-
ized resuscitation strategy. Sepsis is a highly heterogene-
ous and dynamic syndrome, and it is likely that different 
patients within each of the clusters will require differ-
ent resuscitation regimen. However, higher granularity 
means the requirement of large sample size and makes 
the explainability of the model more challenging. We 
need to strike a balance between granularity, sample size 
requirement and explainability. Secondly, there could be 
residual confounding effect in the Cox regression and the 
DTR models due to the observational nature of the study 
design. For example, the study showed that larger doses 
of norepinephrine were consistently associated with 
increased risk of mortality, which could be explained 
by the fact that patients requiring larger dose of norepi-
nephrine were more critically ill. Thirdly, the minimum 
number of patients was predefined to ensure each clus-
ter contained clinically meaningful size, so that optimal 
treatment strategy could be explored within each clus-
ter. However, it is possible that by forcing patients into 
larger/fewer clusters, patients with potentially different 
treatment responses are being lumped together. This is 
actually a trade-off between high granularity and model 
explainability. Finally, it is ideal to explore the fluid and 
norepinephrine dosing in the same model. However, the 
unique combinations of treatments can result in large 
number of interventions, which is not allowed with lim-
ited sample size.

Conclusions
In conclusion, our study identified five distinct classes of 
septic shock. These classes are useful for guiding indi-
vidualized resuscitation strategy and designing future 
trials involving septic shock. By comparing actual and 
optimal treatment strategy, the risk factors for fluid over-
load and norepinephrine overdosing were explored. Our 
results support the previous finding that early initiation 
of norepinephrine is beneficial in the majority of septic 
shock patients, but also complement this finding that 
delayed norepinephrine is beneficial for a subclass of sep-
tic shock.

(See figure on next page.)
Fig. 5  Risk factors for fluid and epinephrine overdosing explored using XGboost. Gradient color indicates the original value for that variable. Each 
point represents a row from the original dataset. A SHAP values of individual features in predicting the risk of fluid overloading (top 20 features are 
shown in the figure). ICU day was the most important variable predicting fluid overload. Patients in class 3 were more likely to receive fluid overload 
(the purple color indicates class 3 patients, and they contribute to increased risk of fluid overload as represented by the positive value on x-axis). B 
SHAP values of individual features in predicting the risk of norepinephrine overdosing (top 20 features are shown in the figure). Higher heart rate 
(purple color) was found to be associated with increased risk (positive SHAP value on x-axis) of norepinephrine overdosing
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Fig. 6  External validation in the eICU-CRD database. A Classification in the training dataset. The convex hulls of data points were assigned to the 
different clusters, and they were projected to two-dimensional space by principal component analysis. B Classification in the eICU-CRD dataset. The 
class membership of the new patients was determined by the highest probability predicted by the FMM. C–E Relationship between the difference 
between actual and optimal fluid volume and hospital mortality rate. The models were trained with quadratic terms for the difference between 
actual and optimal fluid volume. F The relationship between hospital mortality and the difference between actual and optimal norepinephrine 
dose
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