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Abstract 

Background: Usually, arterial oxygenation in patients with the acute respiratory distress syndrome (ARDS) improves 
substantially by increasing the level of positive end-expiratory pressure (PEEP). Herein, we are proposing a novel vari-
able  [PaO2/(FiO2xPEEP) or P/FPE] for PEEP ≥ 5 to address Berlin’s definition gap for ARDS severity by using machine 
learning (ML) approaches.

Methods: We examined P/FPE values delimiting the boundaries of mild, moderate, and severe ARDS. We applied ML 
to predict ARDS severity after onset over time by comparing current Berlin  PaO2/FiO2 criteria with P/FPE under three 
different scenarios. We extracted clinical data from the first 3 ICU days after ARDS onset (N = 2738, 1519, and 1341 
patients, respectively) from MIMIC-III database according to Berlin criteria for severity. Then, we used the multicenter 
database eICU (2014–2015) and extracted data from the first 3 ICU days after ARDS onset (N = 5153, 2981, and 2326 
patients, respectively). Disease progression in each database was tracked along those 3 ICU days to assess ARDS sever-
ity. Three robust ML classification techniques were implemented using Python 3.7 (LightGBM, RF, and XGBoost) for 
predicting ARDS severity over time.

Results: P/FPE ratio outperformed  PaO2/FiO2 ratio in all ML models for predicting ARDS severity after onset over time 
(MIMIC-III: AUC 0.711–0.788 and CORR 0.376–0.566; eICU: AUC 0.734–0.873 and CORR 0.511–0.745).

Conclusions: The novel P/FPE ratio to assess ARDS severity after onset over time is markedly better than current 
 PaO2/FiO2 criteria. The use of P/FPE could help to manage ARDS patients with a more precise therapeutic regimen for 
each ARDS category of severity.
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Background
Acute respiratory distress syndrome (ARDS) is an acute 
and intense inflammatory disease process of the lungs 
with an associated high mortality rate of about 40% in 

non-COVID-19 ARDS patients [1, 2]. ARDS is a highly 
heterogeneous syndrome without a specific diagnostic 
test [3–5]. According to the LUNG-SAFE study, ARDS is 
unrecognized in more than half of patients at the time of 
fulfillment of ARDS criteria [1]. The current “Berlin defi-
nition” is under controversy [5–8]. The previous Amer-
ican-European Consensus Conference (AECC) [9] and 
the Berlin definitions are predominantly based on the 
value of the  PaO2/FiO2 ratio at the time of ARDS onset 
[10].

A working definition of ARDS is essentially required 
for clinical trials, epidemiologic studies, and biological 
studies. Moreover, a definition of ARDS is required for 
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clinicians to initiate treatments that would improve clini-
cal outcomes [11], although stratification of ARDS—as 
defined by Berlin criteria—has been shown not very use-
ful for assessing lung severity [8, 12]. The empirical  PaO2/
FiO2 cut-offs for “severity” of 100, 200, and 300  mmHg 
are arbitrary and poorly validated [13]. A recently pub-
lished Reevaluation of Systemic Early Neuromuscular 
Blockade (ROSE) trial emphasized the variability of these 
 PaO2/FiO2 cut-offs as the investigators did not enroll 
patients based on the  PaO2/FiO2 at the time of ARDS 
onset, but based on a  PaO2/FiO2 < 150 mmHg within the 
first 48-h after ARDS diagnosis [14, 15]. The  PaO2/FiO2 
ratio strongly depends on ventilator settings, including 
positive end-expiratory pressure (PEEP), inspiratory/
expiratory time (I:E) ratio, and  FiO2, and the requirement 
of a minimum PEEP of 5  cmH2O did not substantially 
improve Berlin prediction compared to AECC [13, 16]. 
Besides, Berlin definition does not account for the non-
linear relationship of  PaO2 and  FiO2 [17] and has a lim-
ited predictive accuracy in recent trials [18–21].

Assessment of severity in ARDS remains a challenge. 
The relation between oxygenation and prognosis in 
ARDS varies among published reports [20]. For example, 
the current mild ARDS category may not be significantly 
associated with 28-day mortality [22–24]. However, 
although stratification of severity based on Berlin criteria 
may be helpful to identify severe ARDS patients, it may 
have less significance to differentiate between mild and 
moderate ARDS [20]. A recent study identified two dif-
ferent subgroups of moderate ARDS using a 150 mmHg 
 PaO2/FiO2 threshold and may represent a more homo-
geneous distribution of ARDS patients across subgroups 
of severity [25–27]. Whether ARDS outcome relates to 
severity of respiratory failure [28], a higher severity is a 
risk factor for prolonged mechanical ventilation [19]. 
Since  PaO2/FiO2 does not account for PEEP in its cal-
culation, reported  PaO2/FiO2 provides a sense of ARDS 
severity without knowledge of applied PEEP levels.

The main goal of this study was proposing a novel vari-
able  [PaO2/(FiO2xPEEP)] or P/FPE for PEEP ≥ 5  cmH2O 
that, together with corresponding thresholds, could 
serve as an improved criterion to assess ARDS severity. 
The thresholds are 60 to 40 mmHg/cmH2O for mild, 40 
to 20 for moderate, and less than 20 for severe. This new 
criterion adequately addressed Berlin’s definition gap in 
computing ARDS severity by including PEEP in the new 
oxygenation ratio.  Increasing the PEEP level with the 
same  FiO2 yields different  PaO2 and  SpO2 [29].  Thus, 
including PEEP in calculating the degree of oxygenation 
severity could be better than current Berlin definition. 
We examined this hypothesis by applying machine learn-
ing (ML) approaches for predicting ARDS severity over 
time.

Methods
Study design and patient population
Two clinical databases were used for evaluation. Data of 
the first 3 ICU days (considering day 1 for representa-
tive data within the first 24 h after ARDS onset, day 2 for 
data within 24–48 h after onset, and day 3 for data within 
48–72 h after onset) (N = 2738, 1519, and 1341 patients, 
respectively) were extracted from a single-center data-
base MIMIC-III (MetaVision, 2008–2012) [30]. The 
median length of an ICU stay (LOS) of all selected 
ARDS patients in MIMIC-III was 11.29  days (Q1–Q3: 
7.85–17.54). Similarly, data of the first 3 ICU days after 
ARDS onset (N = 5153, 2981, and 2326 patients, respec-
tively) were extracted from a multicenter database eICU 
(2014–2015) [31]. The median length of an ICU LOS of 
all selected ARDS patients in eICU was 11.72 days (6.92–
18.84). All selected patients from both databases fulfilled 
the Berlin criteria for ARDS and were stratified into mild, 
moderate or severe ARDS [6] and received mechani-
cal ventilation (MV) for > 48 h [32, 33]. Disease progres-
sion of ARDS in each database was tracked along those 
3 ICU days to assess lung severity. Patients younger than 
18 years were excluded.

Data extraction
Clinical data of ARDS patients were extracted from both 
databases (MIMIC-III and eICU) using Python 3.7, an 
interpreted, interactive, object-oriented, open-source 
programming language. The selection of clinical variables 
was based on previous studies [1, 19, 34–37].

MIMIC‑III
MIMIC-III is a large, publicly available database includ-
ing de-identified health-related data of approximately 
60,000 admissions of ICU patients [30]. The input vari-
ables include baseline demographic information (age); 
hemodynamic parameters including mean, maximum 
and minimum heart rate (HR); ventilator parameters 
including mean, maximum and minimum respiratory 
rate (RR),  SpO2, and PEEP. These predictors on the third 
ICU day after assessing lung severity, including their 
description (mean and 95% CI), are presented in Table 1, 
and Additional file 1: Tables S1 and S2. The main target 
variable was ARDS severity (where 0 = mild, 1 = moder-
ate, and 2 = severe). ICU mortality (Fig.  1, Additional 
file  1: Figs. S1 and S2) and duration of MV were also 
obtained (Additional file 1: Table S3).

eICU
eICU is a multicenter and publicly available ICU data-
base with high level of detail in the data about more than 
200,000 ICU admissions [31]. Input variables included: 
baseline demographic information (age); ventilator 
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parameters including PEEP; blood gas parameters includ-
ing  FiO2,  PaO2, and  PaCO2 (Table  2, Additional file  1: 
Tables S4 and S5). The main target variable was ARDS 
severity (where 0 = mild, 1 = moderate, and 2 = severe). 
ICU mortality (Fig. 2, Additional file 1: Figs. S3 and S4) 

and duration of MV were also obtained (Additional file 1: 
Table S6).

Experimental methods
Before starting our analysis, the thresholds of the P/FPE 
index (with PEEP ≥ 5) were experimentally tuned. We 
computed the minimum and maximum  P/FPE  values 
of the patients in the two databases, which were 2 and 
60  mmHg/cmH2O, respectively. Then, several cut-offs 
were studied in order to determine the ones that could be 
more accurate in the stratification of ARDS severity. For 
this purpose, we tested round values (to be easily remem-
bered by intensivists) in the range 2–60 and analyzed P/
FPE index of the ARDS severity groups obtained. The 
partition showing a better separation of the ARDS sever-
ity groups obtained was achieved in this study for the fol-
lowing thresholds (with PEEP ≥ 5): 60–40 for mild, 40–20 
for moderate, and < 20 for severe.

Our study is based only on ML analysis and not on 
the conventional statistical hypothesis testing analy-
sis. In general, ML is an exploratory process and a cur-
rent application of artificial intelligence to generate 
predictive models. Using this technology, there is not a 

Table 1 Input variables and their descriptive statistics in MIMIC-III at 72-h

Mild Moderate Severe All

A. ARDS patients 506 (37.73%) 678 (50.56%) 157 (11.71%) 1341 (100%)

B. Descriptive feature—means and 95% CI

Age 61.77 [60.37, 63.17] 60.61 [59.42, 61.79] 60.24 [57.42, 63.07] 61.01 [60.14, 61.87]

PEEP 7.41 [7.11, 7.71] 9.40 [9.06, 9.75] 11.68 [10.83, 12.52] 8.92 [8.68, 9.16]

Heart Rate_Mean 92 [90, 94] 92 [91, 94] 96 [93, 99] 93 [92, 94]

Respiratory Rate_Mean 21 [20, 21] 21 [21, 22] 22 [21, 23] 21 [21, 22]

Heart Rate_Max 114 [112, 116] 114 [112, 116] 120 [116, 124] 115 [113, 116]

Heart Rate_Min 75 [74, 77] 76 [75, 78] 78 [75, 81] 76 [75, 77]

Respiratory Rate_Max 30 [29, 31] 30 [29, 31] 32 [31, 34] 30 [30, 31]

Respiratory Rate_Min 13 [13, 14] 13 [13, 14] 13 [13, 14] 13 [13, 14]

SpO2_Mean 97 [97, 98] 96 [96, 97] 96 [95, 96] 97 [96, 97]

SpO2_Max 100 [100, 101] 100 [99, 100] 100 [99, 100] 100 [99, 100]

SpO2_Min 90 [89, 90] 88 [87, 89] 85 [83, 87] 88 [88, 89]

Fig. 1 Intensive Care Unit mortality at 72 h in relation to degree of 
lung severity in patients with acute respiratory distress syndrome 
included in the MIMIC-III database, according to  PaO2/FiO2 ratio and 
P/FPE (see text for details)

Table 2 Input variables and their descriptive statistics in eICU at 72-h

Mild Moderate Severe All

A. ARDS patients 872 (37.49%) 1025 (44.07%) 429 (18.44%) 2326 (100%)

B. Descriptive feature—means and 95% CI

Age 64.77 [63.78, 65.76] 62.73 [61.83, 63.64] 59.97 [58.67, 61.28] 62.99 [62.39, 63.59]

PEEP 5.95 [5.80, 6.09] 7.16 [6.99, 7.34] 10.09 [9.72, 10.46] 7.25 [7.12, 7.38]

FiO2 0.40 [0.39, 0.41] 0.50 [0.49, 0.51] 0.81 [0.79, 0.83] 0.52 [0.51, 0.53]

PaO2 98.89 [97.17, 100.62] 80.52 [79.25, 81.78] 74.81 [72.83, 76.79] 86.36 [85.34, 87.37]

PaCO2 39.93 [39.33, 40.53] 42.38 [41.72, 43.04] 44.23 [43.13, 45.33] 41.80 [41.38, 42.23]
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one-model-fits-all solution. Precisely, there is no ML 
method that reaches the highest accuracy for all domains, 
datasets, or problem types [38]. The optimal model dif-
fers from one problem to another based on the char-
acteristics of variables and observations. Our aim was 
to implement ML models capable of predicting ARDS 
severity over time to compare the  PaO2/FiO2 ratio—as 
mandated by the current Berlin criteria for ARDS—with 
the proposed new P/FPE ratio according to the following 
three scenarios: (1) Scenario I: predicting ARDS severity 
in the  3rd ICU day using information captured in the 1st 
ICU day; (2) Scenario II: predicting ARDS severity in the 
 3rd ICU day using information captured in the 2nd ICU 
day; (3) Scenario III: predicting ARDS severity in the  3rd 
ICU day using information captured in the 1st and 2nd 
ICU days.

We implemented three robust supervised ML algo-
rithms using Python 3.7. The ML algorithms were Light 
Gradient Boosting Machine (LightGBM) [39], Ran-
dom Forest (RF) [40], and eXtreme Gradient Boosting 
(XGBoost) [41]. Grid search was used to identify the 
optimal values for their input parameters. The quality of 
the prediction models was computed based on a tenfold 
cross-validation approach. AUC and CORR (correla-
tion between the predicted and actual values of severity 
level) were used to assess model performance in predict-
ing ARDS severity as a categorical prediction. To provide 
a meaning to the findings, we used the classification of 
performance suggested by Hosmer and Lemeshow [42]: 
“excellent” if AUC ≥ 0.9; “good” if AUC is between 0.8 and 
0.9; “fair” if AUC is between 0.7 and 0.8; “poor” if AUC 
is between 0.6 and 0.7; and “very poor” if AUC is below 
0.6. For CORR, we used the interpretation suggested by 
Mukaka [43] who proposed “very high” for CORR ≥ 0.9 
(positive correlation) or CORR ≤ -0.9 (negative 

correlation); “high” if CORR is between 0.7 and 0.9 (posi-
tive) or -0.9 and -0.7 (negative); “moderate” if CORR is 
between 0.5 and 0.7 (positive) or -0.7 and -0.5 (negative); 
“low” if CORR is between 0.3 and 0.5 (positive) or -0.5 
and -0.3 (negative), and “negligible” otherwise.

Results
The findings of the three classification ML methods for 
the three predictive scenarios in the two databases are 
presented in Tables 3 and 4. Table 3 shows the quality of 
ML predictions for MIMIC-III, confronting the results 
obtained for  PaO2/FiO2 (Table 3(a)) with those obtained 
for P/FPE (Table 3(b)). Table 4 shows the same compara-
tive results in patients from the eICU database.

For MIMIC-III, the best ML severity predictive model 
on the third ICU day was obtained by scenario II and 
by P/FPE with an AUC = 0.788 and CORR = 0.566, 
using LightGBM algorithm. When  PaO2/FiO2 is used, 
AUC = 0.635 and CORR = 0.19, but these performances 
were obtained with different algorithms. In qualita-
tive terms, P/FPE ratio improves  PaO2/FiO2 ratio from 
“poor” to “fair” AUC, and from “negligible” to “moderate” 
CORR.

For the eICU database, the results were slightly bet-
ter. The best ML severity predictive model was also 
observed for scenario II. This finding confirms that the 
best approach to predict ARDS severity on the third ICU 
day is to consider the condition of the patient in the sec-
ond ICU day after ARDS onset, rather than the first ICU 
day or both. For eICU data, the best AUC and CORR val-
ues are 0.873 and 0.745 for P/FPE; and 0.863 and 0.725 for 
 PaO2/FiO2. These results are qualified as a “good” predic-
tive accuracy and a “high” correlation.

In general, P/FPE ratio has a better behavior in the pre-
diction of ARDS severity than  PaO2/FiO2 ratio in terms 
of AUC and CORR. Whereas  PaO2/FiO2 obtained up to 
0.635 AUC and up to 0.19 CORR in MIMIC-III, the use 
of P/FPE reached 0.788 AUC and 0.566 CORR. This rep-
resents increments of + 0.153 AUC and + 0.376 CORR 
and shows the advantages of using the P/FPE ratio.

Discussion
In this large study, we propose a novel variable or for-
mula (P/FPE) and corresponding thresholds for classify-
ing ARDS severity. We investigated several ML methods 
to generate severity predictive models in almost 8,000 
patients with ARDS over time after ARDS diagnosis. 
Our findings confirmed that the best approach to pre-
dict ARDS severity on the third ICU day is to consider 
the condition of the patient in the second ICU day after 
ARDS onset, rather than during the first ICU day as man-
dated by Berlin criteria.

Fig. 2 Intensive Care Unit mortality at 72 h in relation to degree of 
lung severity in patients with acute respiratory distress syndrome 
included in the eICU database, according to  PaO2/FiO2 ratio and P/FPE 
(see text for details)
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For the MIMIC-III database, predictive models using 
the P/FPE ratio attained outstanding improvements in 
terms of AUC (15% improvement) and CORR (37.6% 
improvement), when compared to the previous  PaO2/
FiO2 models. For the eICU database, models based on 
P/FPE also outperformed  PaO2/FiO2 predictions, with 
14.8% and 2% improvements of AUC and CORR, respec-
tively. The difference in terms of the accuracy between 
the two databases is remarkable regarding CORR. This is 
due to the fact that eICU is a multicenter ICU database 
with high granularity data (i.e., high level of detail in the 
data) for over 200,000 admissions to ICUs. By contrast, 
MIMIC-III is a single-center ICU database for approxi-
mately 60,000 admissions of ICU patients. Therefore, in 
all extracted data of the three ICU days, the number of 
extracted patients from eICU was greater than the num-
ber of extracted patients from MIMIC-III. Consequently, 
this would lead to better ML results in terms of CORR for 
the eICU database. Overall, the novel P/FPE ratio outper-
formed the  PaO2/FiO2 ratio in all ML applied models and 
showed that predictions based on the patient condition 

in the second day after onset are better than predictions 
based on the first 24  h (7.2–13.8% AUC and 1.5–22% 
CORR improvements), followed by the predictions based 
on both the first and the second day conditions (0.1–0.3% 
AUC and 0.18–14% CORR improvements).

In contrast to our study, most recent studies developed 
ML approaches to predict the risk of ARDS in critically 
ill patients prior to ARDS onset [36, 44, 45], based on 
single-center databases [36, 45] and using one single ML 
algorithm [36, 44]. Consequently, their findings have seri-
ous limitations for the generalizability in the context of 
assessing the prediction of ARDS outcome.

This large study proposes a novel criterion to reclassify 
ARDS patients in terms of severity by using ML meth-
ods on an extensive amount of data from two large data-
sets of critically ill patients. The relatively good accuracy 
of P/FPE (when compared to  PaO2/FiO2) in stratifying 
ARDS patients could allow to overcome the major clini-
cal drawbacks of the current Berlin definition. Also, this 
study is implementing ML models for predicting severity 
over time after ARDS onset. Critically ill patients are an 

Table 3 Quality of the third ICU day severity predictive ML models for MIMIC-III

* Identifies the optimal scenario and ML model

Algorithm AUC, mean ± SD CORR, mean ± SD

(a) PaO2/FiO2 results
Scenario I: Predicting ARDS Severity in the 3rd ICU day using the data in 1st ICU day

XGBoost 0.616 ± 0.039 0.190 ± 0.068

RF 0.622 ± 0.048 0.173 ± 0.089

LightGBM 0.612 ± 0.039 0.138 ± 0.084

*Scenario II: Predicting ARDS Severity in the 3rd ICU day using the data in 2nd ICU day

XGBoost 0.621 ± 0.023 0.147 ± 0.121

*RF 0.635 ± 0.020 0.139 ± 0.094

LightGBM 0.622 ± 0.025 0.126 ± 0.120

Scenario III: Predicting ARDS Severity in the 3rd ICU day using the data in 1st & 2nd ICU days

XGBoost 0.619 ± 0.030 0.150 ± 0.106

RF 0.627 ± 0.022 0.177 ± 0.108

LightGBM 0.618 ± 0.022 0.086 ± 0.101

(b) P/FPE  results
Scenario I: Predicting ARDS Severity in the 3rd ICU day using the data in 1st ICU day

XGBoost 0.711 ± 0.029 0.385 ± 0.064

RF 0.712 ± 0.027 0.408 ± 0.060

LightGBM 0.716 ± 0.029 0.376 ± 0.073

*Scenario II: Predicting ARDS Severity in the 3rd ICU day using the data in 2nd ICU day

XGBoost 0.785 ± 0.025 0.514 ± 0.053

RF 0.787 ± 0.023 0.546 ± 0.061

*LightGBM 0.788 ± 0.020 0.566 ± 0.044

Scenario III: Predicting ARDS Severity in the 3rd ICU day using the data in 1st & 2nd ICU days

XGBoost 0.782 ± 0.025 0.548 ± 0.049

RF 0.780 ± 0.023 0.538 ± 0.065

LightGBM 0.785 ± 0.021 0.511 ± 0.055



Page 6 of 9Sayed et al. Crit Care          (2021) 25:150 

ideal population for clinical database investigations using 
machine learning algorithms because while the data from 
ICUs are extensive, the value of many diagnostic and 
therapeutic interventions remains largely unproven [46].

ARDS is considered one of the major reasons of ICU 
admission, and it is associated with a high hospital mor-
tality [1]. Despite its high mortality rate and high rates 
of ICU utilization, ARDS remains critically misdiag-
nosed and globally under-diagnosed in the ICU settings 
[1]. Furthermore, increasing ARDS severity is associated 
with increased mortality rate [6]. The  PaO2/FiO2 ratio 
categorizes ARDS patients according to the severity of 
their oxygenation deficit without considering the level 
of applied PEEP in the assessment of lung severity. The 
 PaO2/FiO2 ratio does not appropriately show the sever-
ity of ARDS for PEEP ≥ 5. However, the application of 
PEEP plays a significant role in improving oxygenation. It 
is well established that changes in PEEP alter the  PaO2/
FiO2 in lung-injured patients [29]. Attempting to predict 
lung severity and patient outcomes based solely in  PaO2/
FiO2 on this basis is inherent flawed. Thus, the stratifica-
tion of ARDS patients as proposed by the Berlin criteria 

is useless for assessing severity of lung injury and could 
be of no benefit for enrolling patients into therapeu-
tic clinical trials. The P/FPE for PEEP ≥ 5 appropriately 
addressed Berlin’s definition gap in computing ARDS 
severity by including PEEP in the novel ratio. Clearly, our 
study showed that P/FPE thresholds improved prediction 
of ARDS severity. This can lead to important medical 
implications by accurately anticipate specific treatment 
for each ARDS category, which could eventually decrease 
ARDS mortality. In other words, P/FPE can represent a 
good solution for the clinical assessment of ARDS sever-
ity and as a guidance for treatment of ARDS.

Our study has several strengths. First, we have ana-
lyzed a large population of ARDS patients within 
their first three ICU days after onset. Second, we have 
described and validated our findings using both a large 
single-center database (MIMIC-III) and a large multi-
center database (eICU). Third, we have investigated sev-
eral ML predictive models for ARDS severity over time 
after ARDS onset. We believe that our approach is gen-
eralizable across other ARDS populations. However, we 
acknowledge some limitations to our study. First, our 

Table 4 Quality of the third ICU day severity predictive ML models for eICU

Algorithm AUC, mean ± SD CORR, mean ± SD

(a) PaO2/FiO2 results
Scenario I: Predicting ARDS Severity in the 3rd ICU day using the data in 1st ICU day

XGBoost 0.712 ± 0.032 0.398 ± 0.061

RF 0.714 ± 0.030 0.393 ± 0.059

LightGBM 0.713 ± 0.028 0.373 ± 0.069

*Scenario II: Predicting ARDS Severity in the 3rd ICU day using the data in 2nd ICU day

*XGBoost 0.863 ± 0.016 0.725 ± 0.028

RF 0.863 ± 0.016 0.700 ± 0.040

LightGBM 0.860 ± 0.014 0.714 ± 0.028

Scenario III: Predicting ARDS Severity in the 3rd ICU day using the data in 1st & 2nd ICU days

XGBoost 0.860 ± 0.015 0.717 ± 0.025

RF 0.854 ± 0.017 0.693 ± 0.038

LightGBM 0.857 ± 0.014 0.713 ± 0.027

(b)  P/FPE  results
Scenario I: Predicting ARDS Severity in the 3rd ICU day using the data in 1st ICU day

XGBoost 0.735 ± 0.034 0.525 ± 0.056

RF 0.735 ± 0.034 0.514 ± 0.057

LightGBM 0.734 ± 0.034 0.511 ± 0.053

*Scenario II: Predicting ARDS Severity in the 3rd ICU day using the data in 2nd ICU day

*XGBoost 0.873 ± 0.022 0.745 ± 0.033

RF 0.868 ± 0.016 0.739 ± 0.039

LightGBM 0.869 ± 0.023 0.728 ± 0.043

Scenario III: Predicting ARDS Severity in the 3rd ICU day using the data in 1st & 2nd ICU days

XGBoost 0.872 ± 0.020 0.725 ± 0.040

RF 0.860 ± 0.015 0.731 ± 0.038

LightGBM 0.871 ± 0.022 0.717 ± 0.040
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work is based on a retrospective analysis of data whose 
results concerning P/FPE benefits should be confirmed in 
further prospective studies. Second, our analysis is con-
cerned with the evolution and stratification of patients 
in their third ICU day after ARDS onset. Although the 
first 72-h are essential in the management and progres-
sion of ARDS patients, our study lacks the assessment of 
a long-term outcome (e.g., ICU mortality, 60-day mor-
tality). Third, further longitudinal studies on complete 
evolution of ARDS patients could help to find out new 
evidence(s) on the management of ARDS since our ML 
results achieved outstanding improvements compared 
to the current state, with “fair” to “good” predictions of 
ARDS severity [42]. Forth, one could argue that extracor-
poreal membrane oxygenation (ECMO) is not considered 
in this study. ECMO is a clinical outcome and can only 
temporarily sustain severe ARDS patients to bridge peri-
ods of time when oxygenation through the lungs cannot 
be achieved via MV. Moreover, ECMO is a constrained 
resource that is not available in all ICUs. Hence, for the 
purpose of our study, we only considered patients receiv-
ing MV for > 48 h [32, 33]. Fifth, regarding the potential 
consequences of using the new ratio at the bedside, fur-
ther studies are needed to examine whether it could help 
for clinical decision making and guiding therapy. Our 
study opens a possibility to better define ARDS severity, 
as a new research area for patient care improvement.

Conclusions
This large study proposes a novel criterion based on 
the P/FPE formula to assess ARDS severity using ML, 
which is significantly better than the current Berlin cri-
teria using baseline  PaO2/FiO2. Clinically, applying the 
proposed new criteria for ARDS severity enables clini-
cal care physicians to assess lung severity by involving 
PEEP information. Moreover, being able to better adjust 
the severity profiles of ARDS patients will potentially 
improve the selection of more adequate therapeutic regi-
mens for each ARDS category, which could contribute 
to reduce ARDS mortality. However, additional studies 
are required in order to confirm this. In both databases 
(MIMIC-III and eICU) and either in Berlin or P/FPE, sce-
nario II (assessment of oxygenation deficit after 24  h of 
ARDS diagnosis and routine ICU treatment) was the best 
severity predictive scenario. From a ML perspective, P/
FPE outperformed  PaO2/FiO2 in all ML models predicting 
ARDS severity after onset over time in all scenarios either 
in MIMIC-III or eICU. Accordingly, this study can serve 
as an example of how ML is a worth-considering tech-
nology to gain new insights in the development of ARDS 
predictive models which could contribute to improve 
ICU resource allocation and mortality reduction.
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