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Abstract 

Background:  Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resus-
citation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, 
all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of 
intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac 
arrest (OHCA) using artificial neural network (ANN) with and without biomarkers.

Methods:  We performed a post hoc analysis of 932 patients from the Target Temperature Management trial. We 
focused on comatose patients at 24, 48, and 72 h post-cardiac arrest and excluded patients who were awake or 
deceased at these time points. 80% of the patients were allocated for model development (training set) and 20% for 
internal validation (test set). To investigate the prognostic potential of different levels of biomarkers (clinically available 
and research-grade), patients’ background information, and intensive care observation and treatment, we created 
three models for each time point: (1) clinical variables, (2) adding clinically accessible biomarkers, e.g., neuron-specific 
enolase (NSE) and (3) adding research-grade biomarkers, e.g., neurofilament light (NFL). Patient outcome was the 
dichotomised Cerebral Performance Category (CPC) at six months; a good outcome was defined as CPC 1–2 whilst 
a poor outcome was defined as CPC 3–5. The area under the receiver operating characteristic curve (AUROC) was 
calculated for all test sets.

Results:  AUROC remained below 90% when using only clinical variables throughout the first three days in the ICU. 
Adding clinically accessible biomarkers such as NSE, AUROC increased from 82 to 94% (p < 0.01). The prognostic 
accuracy remained excellent from day 1 to day 3 with an AUROC at approximately 95% when adding research-grade 
biomarkers. The models which included NSE after 72 h and NFL on any of the three days had a low risk of false-posi-
tive predictions while retaining a low number of false-negative predictions.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  peder.andersson@med.lu.se
†Niklas Nielsen and Attila Frigyesi contributed equally to this work
1 Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, 
Lund University, Skåne University Hospital, Lund, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8261-9613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-021-03505-9&domain=pdf


Page 2 of 12Andersson et al. Crit Care           (2021) 25:83 

Introduction
To estimate the prognosis for long-term neurological 
recovery in patients who remain comatose during the 
first few days after resuscitation from a cardiac arrest is 
a common and important part of intensive care. Patients’ 
background, cardiac arrest characteristics, vital signs on 
hospital admission, and findings from diagnostic inves-
tigations are all contributing factors which make prog-
nostication complex [1]. There is a need for robust and 
reliable methods to analyse data and assist in prognosti-
cation where a full recovery or severe neurological defi-
cits are possible long-term clinical outcomes.

The prognostication process should, according to the 
latest guidelines, be deferred for at least 72  h after the 
return of spontaneous circulation (ROSC) and should 
be multimodal [2, 3]. The clinical neurological examina-
tion is the foundation of this process and is supported by 
electroencephalography (EEG), somatosensory-evoked 
potentials (SSEP), neuroradiological imaging, and one 
biomarker. Although demographic and clinical vari-
ables carry important prognostic information, none are 
included in current algorithms [4].

In recent years, a number of biomarkers have emerged, 
which potentially could improve current algorithms 
for the prediction of neurological outcome. Today, only 
neuron-specific enolase (NSE) is included in the guide-
lines [4]. Amongst many novel biomarkers that have 
been studied for brain injury after cardiac arrest, the 
most promising so far is neurofilament light (NFL), 
with an area under the receiver operating characteristic 
curve (AUROC) of 94–98% for discrimination of long-
term neurological outcome as early as 24  h after ROSC 
[5, 6]. Other biomarkers of brain injury, including S100 
calcium-binding protein B (S100B), tau protein, glial 
fibrillary acidic protein (GFAP), and ubiquitin C-terminal 
hydrolase-L1 (UCHL1), have also shown potential in car-
diac arrest prognostication [7–11]. Biomarkers of cardiac 
injury such as troponin T (TnT), N-terminal pro–B-type 
natriuretic peptide (BNP) and copeptin along with bio-
markers of systemic inflammation such as procalcitonin 
(PCT) and interleukin-6 (IL-6) are also associated with 
neurological outcome [12–16]. Some of these biomark-
ers are routinely measured in many laboratories, while 
others are not. Despite substantial efforts to determine 
promising biomarkers, the prognostic value of combining 

and adding them to cumulative clinical data remains 
unclear [12].

Improvements in machine learning algorithms and 
increased computational power have led to an enhanced 
diagnostic and prognostic capability in a variety of medi-
cal fields, ranging from radiology to intensive care medi-
cine [17, 18]. Machine learning has also shown promising 
results in short-term and long-term prognostication in 
survivors of out-of-hospital cardiac arrest (OHCA) [19, 
20]. In a recently published study, we showed how a 
supervised machine learning algorithm called artificial 
neural networks (ANN) was superior to logistic regres-
sion when predicting long-term neurological outcome 
including survival, based on information available on 
hospital admission [20].

In this extension of our previous study, we hypoth-
esised that cumulative information obtained during the 
first three days of intensive care could produce a reliable 
model for predicting neurological outcome post OHCA 
using ANN with and without biomarkers.

Materials and methods
Study population and variables
We included all 939 patients from the primary analy-
sis of the Target Temperature Management (TTM) trial 
[21], which randomised unconscious OHCA survivors to 
compare two target temperatures of 33 °C and 36 °C upon 
ICU admission. Patients from 36 ICUs across Europe 
and Australia were enrolled between 2010 and 2013. The 
inclusion criteria were comatose (Glasgow Coma Scale 
(GCS) ≤ 8) adults (≥ 18  years of age) with a sustained 
ROSC after resuscitation from OHCA of presumed car-
diac cause. The primary outcome was mortality until 
the end of the trial, which did not differ significantly 
between the temperature groups [21]. The trial protocol 
was approved by the ethical committees in each partici-
pating country, and informed consent was either waived 
or obtained from all participants or relatives according to 
the national legislation, in line with the Helsinki declara-
tion [22, 23].

Patients without follow-up at six months or an exten-
sively high number of missing values (> 40 missing val-
ues on hospital admission) were excluded (n = 7) from 
the final data analysis. We studied three different time 
points after cardiac arrest (24, 48 and 72 hours). To 

Conclusions:  In this exploratory study, ANNs provided good to excellent prognostic accuracy in predicting neu-
rological outcome in comatose patients post OHCA. The models which included NSE after 72 h and NFL on all days 
showed promising prognostic performance.
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limit prognostication to comatose patients, we excluded 
patients who were awake or deceased at these times 
(Fig. 1). Awake was defined as GCS motor response score 
of 6 (measured on a daily basis), where the patient obeys 
commands for movement or Cerebral Performance Cat-
egory (CPC) 1–3 at ICU discharge.

All variables from the TTM-trial up to day 3 were 
included; background information, prehospital and hos-
pital admission records along with data obtained at 24 h 
(day 1), 48 h (day 2), 72 h (day 3). All variables are dis-
played in Additional file  1: table  s1A; Additional file  2: 
table  s1b; Additional file  3: table  s1c; Additional file  4: 
table  s1D in the electronic supplement. Computed 
tomography (CT), magnetic resonance imaging (MRI), 
EEG and SSEP were not included as these modalities 
were used in a minority of patients.

The TTM-trial biobank collected blood samples from 
29 of the 36 trial sites on day 1,2 and 3 and comprised 
approximately 70% of the total TTM-trial patient popula-
tion. Biomarkers analysed in the biobank were grouped 
by whether they were considered clinically accessible or 
research-grade. Three models (A, B and C) were devel-
oped for each of the three days studied (a total of nine 
datasets):

•	 Level A: Clinical variables only
•	 Level B: A & clinically accessible biomarkers: NSE, 

S100B, TnT, BNP, and PCT
•	 Level C: B & research-grade biomarkers: NFL, 

copeptin, IL-6, tau, GFAP, and UCHL1

To ensure that the prognostic value of the biomarkers 
would not be weakened by the imputation technique, 
we excluded patients with missing values corresponding 
to the exact day the data was missing for NSE and NFL 
in level B and C, respectively, which resulted in level B 
and C having approximately 30% fewer patients in each 
dataset.

Outcome
The outcome was a dichotomised CPC scale graded by 
a blinded assessor after an interview face-to-face or by 
telephone at the six-month follow-up [24]. A good out-
come was defined as CPC 1–2 and poor outcome as CPC 
3–5. A good outcome means independence in activities 
of daily living but may include minor disability. A poor 
outcome means severe brain injury; dependence on oth-
ers, coma or death [25].

Model development
To ensure an unbiased model development and inde-
pendent internal validation, 80% of the patients were 
randomly allocated to development (training set), and 

20% were allocated to validation (test set). The train-
ing/test split remained constant throughout the model 
development. We aimed to create prediction models for 
long-term neurological outcome based on background, 
prehospital, and hospital admission data along with avail-
able ICU information obtained on day 1, 2 and 3 after 
admission based on the following levels: A) without bio-
markers, B) adding clinically accessible biomarkers and 
C) adding research-grade biomarkers.

For each model, we used the following plan for variable 
selection and missing value imputation:

•	 A maximum of 20% missing values for each variable,
•	 A minimum of 2% unique events for binary variables,
•	 A maximum of 98% correlation between variables,
•	 Median or mode imputation to handle missing values 

below the 20% threshold.
•	 To reduce the number of variables in each model, we 

used a wrapper variable selection which combines 
both the Boruta variable selection and Shapley values 
[26].

We used an ANN to predict the neurological outcome 
at six months. An ANN consists of an input layer, a num-
ber of hidden layers and an output layer. These layers 
consist of nodes which can aggregate information from 
previous layers, transform it, and then send it forward to 
the next layer. The aim is to mimic the complex network 
of connected neurons in the human nervous system and 
thereby detect patterns and dependencies between vari-
ables and outcome to improve prognostic performance. 
We used fivefold cross-validation and a Bayesian opti-
misation algorithm for hyperparameter tuning during 
development to find the best possible model within the 
following constraints: 1–3 hidden layers, 5–250 hid-
den nodes in each layer, batch size between 4 and 128, 
a drop-out rate between 0 and 0.5 for the input layer 
and 0–0.5 for the hidden layers, a fixed learning rate of 
10–3, and the activation function for the hidden layers 
was chosen to be either the rectified linear unit (ReLU) 
or the hyperbolic tangent function. We used either L1, L2 
or max-norm for norm-regularisation. All networks were 
trained using early stopping with a patience of 30 epochs 
and a maximum number of 1000 epochs. We used binary 
cross entropy as our loss function. The sigmoid activa-
tion function was used for the output layer. We chose the 
model with the highest mean AUROC of the cross-vali-
dations for further analysis.

After the model development, we applied Shapley addi-
tive explanation algorithm (SHAP) to all models to visu-
alise which variables explained an individual prediction 
and to understand the relative contribution of variables. 
The SHAP algorithm is based on Shapley values, which 
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Fig. 1  Flowchart. Flowchart for the study populations at day 1, 2, and 3 after admission to ICU. Population characteristics in Table 1 are based on 
‘Patients included for further data analysis (n = 932)’. TTM, target temperature management. ICU, intensive care unit
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originate from cooperative game theory, and explains 
how much a single variable contributes to the difference 
between the actual prediction and the mean of all predic-
tions. The SHAP algorithm can help explain how a pre-
diction model works and mitigate some of the concerns 
about "black box" modelling. We created one patient 
example to illustrate the explanation of a patient-specific 
prediction on day 1–3 (level C). For all nine models, we 
calculated the mean of the absolute SHAP values for each 
variable and displayed it using a bar plot to rank the vari-
ables for each model.

Statistical analysis methods
All continuous variables are presented as medians with 
interquartile ranges (IQR). Categorical variables are pre-
sented as numbers and percentages. Missing data are 
presented as percentages. The Mann–Whitney U test 
was used for comparison between groups of continuous 
data, and Fisher’s exact test was used for categorical data. 
We evaluated the prediction models using the receiver 
operating characteristic (ROC) curve and calculated the 
AUROC for all models based on test sets. To evaluate the 
prognostic capability of our models, we calculated a con-
fusion matrix for all test sets, based on the threshold for 
100% specificity in the corresponding training set to dis-
play; True-positive (TP), true-negative (TN), false-posi-
tive (FP) and false-negative (FN) predictions. All p-values 
were two-tailed, and p < 0.05 were considered significant.

Statistical analyses were done in R (The R Founda-
tion for Statistical Computing) and Python [27, 28]. 
All ANN models were created using Tensorflow 2.0, an 
open-source framework developed by Google [29]. The 
’Boruta-Shap’ Python package was used for variable 
selection [26]. The post-hoc explanation of the ANN 
models was based on the ’shap’ package in Python [30]. 
We used the ’pROC’ and ’Optimalcutpoints’ package in 
R when producing the ROC curves and calculating the 
threshold for the confusion matrix [31, 32]. The TRIPOD 
statement was followed when writing this manuscript 
[33].

Results
We included 932 patients from the TTM-trial after 
excluding six patients due to missing outcomes and one 
patient due to missing values. Overall poor outcome 
(CPC 3–5) was found in 492 (53%) patients while good 
outcome (CPC 1–2) was found in 440 (47%) patients [20]. 
The population characteristics are shown in Additional 
file  1: table  s1A; Additional file  2: table  s1b; Additional 
file 3: table s1c; Additional file 4: table s1D (Supplement), 
which includes patients’ background, prehospital and 
admission characteristics, standard ICU observations 
and treatment along with biomarkers obtained on day 1, 

2, and 3. As shown in Fig.  1, we excluded patients who 
were deceased or woke up by 24 h, between 24 and 48 h, 
and between 48 and 72 h in our analysis of day 1, 2 and 3, 
respectively. As described in the methods section, three 
datasets were then created for each day based on the level 
of additional biomarkers. The number of patients in each 
dataset along with the number of variables are shown in 
Table 1.

All models from day 1 to day 3 showed good to excel-
lent prognostic performance in predicting neurological 
outcome at six months (see Fig. 2). Using clinical varia-
bles (level A), the AUROC remained under 90% through-
out the first three days of intensive care. Upon adding the 
clinically accessible biomarkers (level B), the AUROC 
increased from 82 to 94% (p < 0.01). For the model with 
research-grade biomarkers (level C), the prognostic 
performance was excellent from day 1 to day 3 with an 
AUROC at approximately 95% (see Table  1 and Fig.  2). 
In summary, adding clinically accessible biomarkers to 
the clinical variables in level B successively improved the 
prognostication, whereas levels A and C both showed 
similar results on all days. Furthermore, as seen in Fig. 2, 
the sensitivity was above 60% while retaining a specificity 
of 100% for level B at 72 h and level C at all time points.

Based on a threshold with 100% specificity (no false 
positives) for patients in the training set, false-positive 
predictions (predicted poor outcome, reported good 
outcome) occurred in two models in the test set; 0.7% 
(day 1 level C) and 1.2% (day 2 level A). The rate of false-
negative predictions (predicted good outcome, reported 
poor outcome) was high for the majority of the models 
but remained below 25% throughout day 1–3 when the 
research-grade biomarkers were included (level C) (see 
Table 1).

By applying the SHAP algorithm to our models, the 
predictions could be explained. This is illustrated in 
Fig. 3, where the ANN model for level C is used to pre-
dict the probability of a poor outcome in a patient where 
the SHAP algorithm is used to explain the prediction. In 
this example, the patient’s age of 77  years increases the 
risk of a poor outcome, whereas the low levels of bio-
markers (i.e. NFL and NSE) decrease the risk of a poor 
outcome. Furthermore, we used the SHAP algorithm to 
rank the importance of the variables for every model. In 
Fig. 4, the ten most important variables for level A, B and 
C on day 2 were ranked by variable importance (see Sup-
plementary for the top ten rankings of variables for day 1 
and 3). For level A, age and the dose of adrenaline during 
resuscitation were the variables carrying the most value. 
In level B and C, age was ranked as the third most impor-
tant variable when more information was gained by bio-
markers. The dose of adrenaline was reduced to the sixth 
most important variable and was not included in the top 
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ten variables, when clinically accessible and research-
grade biomarkers were added, respectively.

Discussion
In this exploratory retrospective study, we found that 
models using clinical variables paired with biomarkers 
and machine learning appear promising in predicting 

Fig. 2  Prognostic performance. Receiver operating characteristic curves (ROC) and areas under the curves (AUROC) for all nine models including 
95% confidence intervals. The figures present the capability of the models to discriminate patients with poor outcome (Cerebral Performance 
Category [CPC] 3–5) and those with good outcome (CPC 1–2) at six-months on an independent test set. The rows represent the different levels of 
added biomarkers to the available standard intensive care unit (ICU) observations from the TTM-trial: None (level A), clinically accessible biomarkers 
(level B), and research-grade biomarkers (level C). The columns represent the timeline after admission to the ICU. For each ROC curve, the 95% 
CI was calculated for specificity at different levels of sensitivity and displayed as a blue 95 CI band. TTM, target temperature management. CI, 
confidence interval
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Fig. 3  Illustration of the impact of features for a patient-specific prediction. An example of patient-specific prediction using the Shapley additive 
explanations algorithm (SHAP). This patient is predicted to have a 23% risk of a poor outcome on day 1, and 18% and 13% risk of a poor outcome 
on days 2 and 3, respectively (using the level C model). The patient’s age is a is the most important risk-increasing variable while the modest 
levels of biomarkers like NFL, NSE decrease the risk a poor outcome. TNT, Troponin-T (ng/L). NFL, Neurofilament light (ng/L). UCHL1, Ubiquitin 
carboxy-terminal hydrolase L1 (ng/L). NSE, Neuron-specific enolase (ng/ml.) GFAP, Glial fibrillary acidic protein (ng/L)

Fig. 4  SHAP variable importance on day 2. The global importance of each feature of each model illustrated with the SHAP variable importance. 
The most important variable has the highest mean of absolute SHAP values. The top ten SHAP variable importance are shown for level A-C on day 
2 (after 48 h). The left panel shows level A (without adding biomarkers), the middle panel shows level B (adding clinically accessible biomarkers), 
and the right panel shows level C (adding research-grade biomarkers). The ranking of the variables depend on which biomarkers were included 
in the model. For level A (no biomarkers), age and the dose of adrenaline during resuscitation were the variables carrying the most information. In 
level B and C, age was ranked as the third most important variable when more information was provided by biomarkers. The dose of adrenaline 
was reduced to the sixth most important variable when adding clinically accessible biomarkers and was not included in the top ten variables 
when including research-grade biomarkers as well. SHAP, Shapley additive explanations algorithm. CA, cardiac arrest. ROSC, return of spontaneous 
circulation. NSE, Neuron-specific enolase. BNP, brain natriuretic protein. S100B, S100 calcium-binding protein B. NFL, Neurofilament light. GFAP, Glial 
fibrillary acidic protein. Tau. UCHL1, Ubiquitin carboxy-terminal hydrolase L1
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long-term neurological outcome in comatose patients 
post cardiac arrest. Using only clinical variables resulted 
in moderate predictive ability. However, when clini-
cally accessible biomarkers such as NSE were added, the 
predictive capability improved over time, reaching an 
AUROC of 94%, which supports the role of NSE in cur-
rent guidelines. As seen in Fig. 4, age, BNP, and platelets 
also contributed to the prediction on day 3 for level B. 
With research-grade biomarkers added, the prognos-
tic capability was excellent with an AUROC of approxi-
mately 95% already evident after 24 h post cardiac arrest. 
Research-grade biomarkers, such as NFL and GFAP, car-
ried the most robust predictive information, and over 
time they rendered clinical variables largely redundant 
with little additive value, as supported by our previous 
paper, showing a high AUC value (94%) of NFL alone [5]. 
Additional analysis of NFL alone showed excellent prog-
nostic value with an AUROC of 92.3%, 92.3% and 92.5% 
on day 1,2 and 3, respectively (based on the test set) when 
using this study design.

The overall objective in cardiac arrest prognostication 
is to aim for zero false-positive predictions (predicted 
poor outcome, reported good outcome), which would 
result in the withdrawal of life-sustaining therapies in a 
patient who otherwise would have survived with a good 
outcome. The specificity is, therefore, arguably more 
important than sensitivity.

The latest treatment guidelines for comatose cardiac 
arrest survivors recommend multimodal prognostica-
tion to be performed at least 72 h after ROSC. Moseby-
Knappe et al. found that the current 4-step algorithm for 
neurological prognostication after cardiac arrest recom-
mended by the European Resuscitation Council (ERC) 
and the European Society of Intensive Care Medicine 
(ESICM) identified patients with poor outcome with a 
39% sensitivity and 100% specificity [34]. These guide-
lines are based on the consensus opinion of leading 
experts in the field. In contrast to that study, the current 
findings suggest that even at 24 h following cardiac arrest 
the prognostic performance is excellent with an AUROC 
of 95% (95% CI: 92–98%) and sensitivity above 60% while 
retaining 100% specificity upon adding research-grade 
biomarkers. These results are mainly driven by the bio-
marker NFL and are similar to two previous studies, of 
which one is based on the same data (TTM-trial) [5, 6]. 
In fact, level B on day 3 (72 h) as well as level C for all 
time points had a sensitivity above 60% while retaining 
100% specificity, which is comparable with the perfor-
mance reported using the ERC/ESICM guidelines, which 
included important prognostics such as SSEP, EEG and 
neuroradiological imaging. This is noteworthy, especially 
for level B on day 3, which is mainly driven by NSE val-
ues. Both NSE after 72 h and NFL at all time points have 

previously shown good to excellent performance individ-
ually with a sensitivity of 52% and 53–65% while retain-
ing 100% specificity, respectively [5, 35]. Our study differs 
from those studies by only including comatose patients.

To further investigate this, we based the prediction of 
poor outcome in the test set on the threshold of 100% 
specificity in the training set. This does not guarantee 
a zero false-positive rate in the test set, as it does not 
account for the lower bound in the confidence interval 
or outliers. Nevertheless, the false-positive predictions 
for the model, including research-grade biomarkers, were 
less than 1% on day 1, and 0% on days 2 and 3 with a rea-
sonably low false-negative rate of 15–25%. Consequently, 
the specificity for level C on day 1 was not 100% based on 
the threshold in the training set. For the model including 
clinically accessible biomarkers on day 3, the false-posi-
tive predictions were 0% and the false-negative rate was 
also reasonably low (25%).

Deep learning algorithms are new for OHCA prognos-
tication. In a study from 2019, Kwon et  al. showed that 
a deep learning algorithm outperformed other types 
of supervised machine learning based on a validation 
set of 8,145 patients when predicting a poor outcome 
(CPC 3–5) on hospital discharge [19]. They reported an 
AÙROC of 95% with narrow confidence intervals based 
on information available at the time of ROSC only. Their 
study differs from ours as we looked at the six-month 
neurological outcome and focused on comatose patients 
admitted to the ICU, where the balance between good 
and poor outcome is around 50%.

To our knowledge, this is the first prediction study 
using cumulative data in the first three days of ICU 
admission and the first to combine the predictive capa-
bility of different groups of biomarkers by adding them 
to clinical variables. The cumulative approach is a natural 
step after testing biomarkers individually to understand 
how they are ranked and interact over time. The SHAP 
algorithm allows for each prediction to be explained, 
which can help both researchers and physicians in treat-
ing OHCA patients and understanding the dynamic 
between the variables better, both for the individual 
patient and as a group.

The ranking of the variables depends on which bio-
markers were included in the models. As shown in Fig. 4, 
age and the dose of adrenaline during resuscitation were 
the variables carrying the most information on day 2 
(level A). The reason why the dose of adrenaline plays 
such an important role could be related to its correla-
tion to other predictors such as time to ROSC and initial 
cardiac rhythm. The biomarkers dominated the top ten 
ranked variables upon being added to the models. Age 
remained an important variable in all models because age 
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itself is a risk factor and possibly due to its correlation 
with comorbidities.

There are several limitations to this investigation. In 
our previous study, which was based on admission data 
from the TTM-trial, ANN was superior to logistic regres-
sion in predicting long-term neurological outcome [20]. 
We chose the same approach in this study, well aware 
that the decreasing number of patients in the days fol-
lowing ICU admission may be too low for ANN models 
to perform well (see Fig.  1). With very strong biomark-
ers like NFL and a limited number of patients for model 
development, ANN might not be superior to logistic 
regression. Furthermore, the size of the dataset led to 
moderately wide confidence intervals in the test set and 
even though the training/test split was random, the size 
of the datasets made the test sets vulnerable to patient 
outliers and thereby affecting the model performance.

Moreover, differences in patient care during the last 
decade, from prehospital response to post-arrest care, 
could decrease the generalisability of the models, as our 
models are based on patient data from seven to ten years 
ago. There is, however, no new evidence-based therapies 
included in clinical practice during this period. Addition-
ally, these models are based on a randomised trial which 
only included patients with OHCA of a presumed cardiac 
cause which could affect the generalisability.

Another limitation of this study is that none of the 
important prognostic examinations such as EEG, SSEP or 
neuroradiological imaging after admission were included. 
When only incorporating clinical variables (neither 
clinically accessible nor research-grade biomarkers), the 
prognostic performance did not improve in the first three 
days after ICU admission (see Fig. 2). When comparing 
the prognostic performance to prediction models based 
on merely prehospital and admission data, it seems little, 
if any, prognostic value is added after hospital admission 
using only clinical variables (approximately 20 variables 
in each model, see Table  1) [20, 36, 37]. The TTM risk 
score and the ANN model in our previous study were 
developed on the same population as this study and 
showed good prognostic performance with AUROC of 
84.2% and 89.1%, respectively [20, 36]. It is a noteworthy 
finding that the prognostic improvement is absent dur-
ing the first three days after ICU admission. This under-
lines the need to use other prognostic tools like SSEP, 
EEG etc. when performing cardiac arrest prognostica-
tion in an ICU setting. Furthermore, it also pinpoints 
the uncertainty when using datasets of the size. When 
evaluating the model performance on the independ-
ent test set, the results can be affected by the training/
test split and be vulnerable to outliers. For example, the 
model performance was presumably better at the time of 
hospital admission than after 24  h without biomarkers 

[20]. This difference is important and must be kept in 
mind when discussing this approach to cardiac arrest 
prognostication.

From an ICU perspective, one of the strengths of this 
study was that we modified the study population and 
excluded patients who were either deceased or woke up 
during the first 72  h after ICU admission. This strategy 
distilled the dataset to those patients that were at risk of 
a poor prognosis at each time point. Without doing so, 
the prediction models would be falsely enhanced as we 
would be predicting patients who had already woken up.

To make these models ready for clinical implemen-
tation, external validation and the use of a larger popu-
lation for model development is needed in order to 
minimise some of the limitations in this study.

Conclusion
In this exploratory study, ANNs provided good to excel-
lent prognostic accuracy in predicting neurological 
outcome in comatose patients post OHCA using clini-
cal variables and biomarkers from the first three days 
of intensive care. The models which included NSE after 
72 h and NFL on all days showed promising prognostic 
performance.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1305​4-021-03505​-9.

Additional file 1: Figure 4. SHAP variable importance on day 1.

Additional file 2: Figure 4. SHAP variable importance on day 3.

Additional file 3: Table 1A. Baseline characteristics.

Additional file 4: Table 1B.  Day 1–24 hours of ICU treatment.

Additional file 5: Table 1C. Day 2–48 hours of ICU treatment.

Additional file 6: Table 1D. Day 3–72 hours of ICU treatment.

Authors’ contributions
PA, AF, JJ, NN conceived and designed the study. OB (primarily) and PA 
performed the modelling and statistical analyses. KB and HZ performed tau 
and NFL measurements. PA wrote the first draft of the manuscript. All authors 
contributed, critically revised and approved the final manuscript.

Funding
Open access funding provided by Lund University. PA received funding from 
the Royal Physiographic Society of Lund, Sweden, and the Regional research 
support, Region Skåne. JJ has received independent research grants to fund 
research time from Stig and Ragna Gorthons Foundation, Thelma Zoega Foun-
dation, VO FoU Skånevård Sund and the European Regional Development 
Fund through the Interreg IV A OKS program. TC and HF is funded by Region 
Skåne. No commercial funding was received. The funding organizations did 
not have any access to the data, nor did they have any influence on data anal-
ysis or interpretation. HZ is a Wallenberg Scholar supported by grants from 
the Swedish Research Council (#2018–02532), the European Research Council 
(#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the 
Alzheimer Drug Discovery Foundation (ADDF), USA (#201809–2016862), AD 
Strategic Fund and the Alzheimer’s Association (ADSF-21–831376-C, ADSF-
21–831381-C and ADSF-21–831377-C), the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie grant 

https://doi.org/10.1186/s13054-021-03505-9
https://doi.org/10.1186/s13054-021-03505-9


Page 11 of 12Andersson et al. Crit Care           (2021) 25:83 	

agreement No 860197 (MIRIADE), and the UK Dementia Research Institute 
at UCL. KB is supported by the Swedish Research Council (#2017–00915), 
the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809–
2016615), the Swedish Alzheimer Foundation (#AF-742881), Hjärnfonden, 
Sweden (#FO2017-0243), the Swedish state under the agreement between 
the Swedish government and the County Councils, the ALF-agreement 
(#ALFGBG-715986), and European Union Joint Program for Neurodegenerative 
Disorders (JPND2019-466–236). AF received funding from the Governmental 
funding of clinical research within the NHS (National Health Service) No. 
2019:YF0053. The TTM-trial and the present study was funded by independent 
research grants from the non-profit or governmental agencies: Swedish Heart 
Lung Foundation (grant no. 20090275); Arbetsmarknadens försäkringsaktie-
bolag AFA-Insurance Foundation (grant no. 100001); The Swedish Research 
Council (grant nos. 134281,296161, 286321); Regional research support, 
Region Skåne; Governmental funding of clinical research within the Swedish 
NHS (National Health Services) (grant nos. M2010/1837, M2010/1641,353301); 
Thelma Zoega Foundation; Krapperup Foundation; Thure Carlsson Founda-
tion; Hans-Gabriel and Alice Trolle-Wachtmeister Foundation for Medical 
Research; Skåne University Hospital; Sweden, Tryg Foundation; Denmark, and 
the European Clinical Research Infrastructures Network.

Availability of data and materials
The data is available from the Target Temperature Management trial steering 
group after an approval process.

Ethics approval and consent to participate
The TTM-trial protocol was approved by ethics committees in the follow-
ing institutions: St George Hospital, Sydney, Australia; North Shore Hospital, 
Sydney, Australia; Liverpool Hospital, Sydney, Australia; The George Institute 
of Global Health, Sydney, Australia; General University Hospital in Prague, 
Prague, Czech Republic; The Heart Centre, Copenhagen University Hospital 
Rigshospitalet, Copenhagen, Denmark; Ospedale Universitario di Cattinara, 
Trieste, Italy; Santa Maria degli Angeli Hospital, Pordenone, Italy; San Martino, 
Italy; National ethics committee on research, Luxembourg; Amsterdam Medi-
cal Centre, Amsterdam, the Netherlands; Leeuwarden Hospital, Leeuwarden, 
the Netherlands; Rijnstaate Hospital, Arnhem, the Netherlands; Onze Lieuwe 
Vrouwe Gasthuis, Amsterdam, the Netherlands; Oslo University Hospital, Oslo, 
Norway; Haukeland University Hospital, Bergen, Norway; Helsingborg Hospital, 
Helsingborg, Sweden; Karlstad Hospital, Karlstad, Sweden; Kungälv Hospital, 
Kungälv, Sweden; Linköping University Hospital, Linköping, Sweden; Skåne 
University Hospital, Lund, Sweden; Skåne University Hospital, Malmö, Sweden; 
Norra Älvsborgs Län Hospital, Sweden; Vrinnevi Hospital, Norrköping, Sweden; 
Sahlgrenska University Hospital, Gothenburg, Sweden; Örebro University Hos-
pital, Örebro, Sweden; Geneva University Hospital, Geneva, Switzerland; Hospi-
tal St.Gallen, St. Gallen, Switzerland; Hospital La Chaux de Fonds, Switzerland; 
University Hospital of Wales, Cardiff, UK; Royal Berkshire Hospital, Reading, UK; 
Royal Bournemouth Hospital, Bournemouth, UK; Guy’s and St Thomas’ NHS 
Trust, London, UK; and St George’s Hospital, London, UK. Informed consent 
was waived or was obtained according to national legislation, in line with the 
Helsinki declaration.

Consent for publication
Not applicable.

Competing interest
HZ has served at scientific advisory boards for Denali, Roche Diagnostics, 
Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics and CogRx, has 
given lectures in symposia sponsored by Fujirebio, Alzecure and Biogen, and 
is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is 
a part of the GU Ventures Incubator Program. KB has served as a consultant, at 
advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, 
JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, 
and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in 
Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. 
The other authors declare that they have no conflict of interest.

Author details
1 Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, 
Lund University, Skåne University Hospital, Lund, Sweden. 2 Department 
of Clinical Sciences Lund, Anesthesia and Intensive Care, Lund University, 
Helsingborg Hospital, Lund, Sweden. 3 Department of Energy Sciences, Faculty 

of Engineering, Lund University, Lund, Sweden. 4 Centre for Mathematical Sci-
ences, Mathematical Statistics, Lund University, Lund, Sweden. 5 Department 
of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hos-
pital, Lund, Sweden. 6 Department of Cardiology, Rigshospitalet and Depart-
ment of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 
7 Department of Psychiatry and Neurochemistry, Institute of Neuroscience 
and Physiology, The Sahlgrenska Academy At the University of Gothenburg, 
Mölndal, Sweden. 8 Clinical Neurochemistry Laboratory, Sahlgrenska University 
Hospital, Mölndal, Sweden. 9 Department of Neurodegenerative Disease, UCL 
Institute of Neurology, Queen Square, London, UK. 10 UK Dementia Research 
Institute At UCL, London, UK. 11 Medical and Health Directorate, National Fire 
and Rescue Corps, 1, rue Robert Stumper, 2557 Luxembourg, Luxembourg. 
12 Department of Clinical Sciences Malmö, Anaesthesia and Intensive Care, 
Lund University, Hallands Hospital Halmstad, Halland, Sweden. 13 Department 
of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, 
Skåne University Hospital, Malmö, Sweden. 14 Adult Critical Care, University 
Hospital of Wales, Cardiff, UK. 15 Department of Clinical Sciences Lund, Cardiol-
ogy, Lund University, Skåne University Hospital, Lund, Sweden. 16 Department 
of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen 4, 
222 41 LundLund, Sweden. 

Received: 18 December 2020   Accepted: 10 February 2021

References
	1.	 Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO. Brain 

injury after cardiac arrest: from prognostication of comatose patients to 
rehabilitation. Lancet Neurol. 2020;19(7):611–22.

	2.	 Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. 
European resuscitation council and European society of intensive care 
medicine 2015 guidelines for post-resuscitation care. Intensive Care Med. 
2015;41(12):2039–56.

	3.	 Nolan JP, Cariou A. Post-resuscitation care: ERC-ESICM guidelines 2015. 
Intensive Care Med. 2015;41(12):2204–6.

	4.	 Sandroni C, D’Arrigo S, Nolan JP. Prognostication after cardiac arrest. Crit 
Care. 2018;22(1):150.

	5.	 Moseby-Knappe M, Mattsson N, Nielsen N, Zetterberg H, Blennow K, 
Dankiewicz J, et al. Serum neurofilament light chain for prognosis of 
outcome after cardiac arrest. JAMA Neurol. 2019;76(1):64–71.

	6.	 Wihersaari L, Ashton NJ, Reinikainen M, Jakkula P, Pettilä V, Hästbacka J, 
et al. Neurofilament light as an outcome predictor after cardiac arrest: a 
post hoc analysis of the COMACARE trial. Intensive Care Medicine. 2020.

	7.	 Kim MJ, Kim T, Suh GJ, Kwon WY, Kim KS, Jung YS, et al. Association 
between the simultaneous decrease in the levels of soluble vascular cell 
adhesion molecule-1 and S100 protein and good neurological outcomes 
in cardiac arrest survivors. Clin Exp Emerg Med. 2018;5(4):211–8.

	8.	 Mattsson N, Zetterberg H, Nielsen N, Blennow K, Dankiewicz J, Friberg H, 
et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 
2017;82(5):665–75.

	9.	 Kaneko T, Kasaoka S, Miyauchi T, Fujita M, Oda Y, Tsuruta R, et al. Serum 
glial fibrillary acidic protein as a predictive biomarker of neurological 
outcome after cardiac arrest. Resuscitation. 2009;80(7):790–4.

	10.	 Ebner F, Moseby-Knappe M, Mattsson-Carlgren N, Lilja G, Dragancea I, 
Unden J, et al. Serum GFAP and UCH-L1 for the prediction of neurological 
outcome in comatose cardiac arrest patients. Resuscitation. 2020.

	11.	 Ok G, Aydin D, Erbuyun K, Gursoy C, Taneli F, Bilge S, et al. Neurological 
outcome after cardiac arrest: a prospective study of the predictive ability 
of prognostic biomarkers neuron-specific enolase, glial fibrillary acidic 
protein, S-100B, and procalcitonin. Turk J Med Sci. 2016;46(5):1459–68.

	12.	 Annborn M, Nilsson F, Dankiewicz J, Rundgren M, Hertel S, Struck J, et al. 
The combination of biomarkers for prognostication of long-term out-
come in patients treated with mild hypothermia after out-of-hospital car-
diac arrest-a pilot study. Ther Hypothermia Temp Manag. 2016;6(2):85–90.

	13.	 Düring J, Annborn M, Cronberg T, Dankiewicz J, Devaux Y, Hassager C, 
et al. Copeptin as a marker of outcome after cardiac arrest: a sub-study of 
the TTM trial. Critical care (London, England). 2020;24(1):185-.

	14.	 Myhre PL, Tiainen M, Pettila V, Vaahersalo J, Hagve TA, Kurola J, et al. NT-
proBNP in patients with out-of-hospital cardiac arrest: Results from the 
FINNRESUSCI Study. Resuscitation. 2016;104:12–8.



Page 12 of 12Andersson et al. Crit Care           (2021) 25:83 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	15.	 Bro-Jeppesen J, Kjaergaard J, Stammet P, Wise MP, Hovdenes J, Åneman 
A, et al. Predictive value of interleukin-6 in post-cardiac arrest patients 
treated with targeted temperature management at 33 °C or 36 °C. Resus-
citation. 2016;98:1–8.

	16.	 Frydland M, Kjaergaard J, Erlinge D, Stammet P, Nielsen N, Wanscher M, 
et al. Usefulness of serum B-type natriuretic peptide levels in comatose 
patients resuscitated from out-of-hospital cardiac arrest to predict out-
come. Am J Cardiol. 2016;118(7):998–1005.

	17.	 Holmgren G, Andersson P, Jakobsson A, Frigyesi A. Artificial neural net-
works improve and simplify intensive care mortality prognostication: a 
national cohort study of 217,289 first-time intensive care unit admissions. 
J Intensive Care. 2019;7:44.

	18.	 Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, 
et al. Chest radiograph interpretation with deep learning models: assess-
ment with radiologist-adjudicated reference standards and population-
adjusted evaluation. Radiology. 2020;294(2):421–31.

	19.	 Kwon JM, Jeon KH, Kim HM, Kim MJ, Lim S, Kim KH, et al. Deep-learning-
based out-of-hospital cardiac arrest prognostic system to predict clinical 
outcomes. Resuscitation. 2019;139:84–91.

	20.	 Johnsson J, Bjornsson O, Andersson P, Jakobsson A, Cronberg T, Lilja G, 
et al. Artificial neural networks improve early outcome prediction and 
risk classification in out-of-hospital cardiac arrest patients admitted to 
intensive care. Crit Care. 2020;24(1):474.

	21.	 Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. 
Targeted temperature management at 33 degrees C versus 36 degrees C 
after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.

	22.	 Nielsen N, Wetterslev J, Al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop 
G, et al. Target temperature management after out-of-hospital cardiac 
arrest–a randomized, parallel-group, assessor-blinded clinical trial–ration-
ale and design. Am Heart J. 2012;163(4):541–8.

	23.	 Nielsen N, Winkel P, Cronberg T, Erlinge D, Friberg H, Gasche Y, et al. 
Detailed statistical analysis plan for the target temperature management 
after out-of-hospital cardiac arrest trial. Trials. 2013;14:300.

	24.	 Cronberg T, Lilja G, Horn J, Kjaergaard J, Wise MP, Pellis T, et al. Neuro-
logic function and health-related quality of life in patients following 
targeted temperature management at 33 degrees C vs 36 degrees C after 
out-of-hospital cardiac arrest: a randomized clinical trial. JAMA Neurol. 
2015;72(6):634–41.

	25.	 A randomized clinical study of cardiopulmonary-cerebral resuscitation: 
design, methods, and patient characteristics. Brain Resuscitation Clinical 
Trial I Study Group. Am J Emerg Med. 1986;4(1):72–86.

	26.	 Keany E. BorutaShap 1.0.14 2020 [Available from: https​://pypi.org/proje​ct/
Borut​aShap​/.

	27.	 R Core Team. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing; 2020.

	28.	 Python Core Team. Python: A dynamic, open source programming 
language. Python version 3.7 ed: Python Software Foundation; 2020.

	29.	 Abadi M, Barham P, Chen JM, Chen ZF, Davis A, Dean J, et al. TensorFlow: a 
system for large-scale machine learning. In: Proceedings of Osdi’16: 12th 
Usenix symposium on operating systems design and implementation. 
2016:265–83.

	30.	 Lundberg SM, Lee S-I. A unified approach to interpreting model 
predictions. Proceedings of the 31st international conference on neural 
information processing systems; Long Beach, California, USA: Curran 
Associates Inc.; 2017. p. 4768–77.

	31.	 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: 
an open-source package for R and S+ to analyze and compare ROC 
curves. BMC Bioinformatics. 2011;12:77.

	32.	 López-Ratón M, Rodríguez-Álvarez MX, Suárez CC, Sampedro FG. Opti-
malCutpoints: an R package for selecting optimal cutpoints in diagnostic 
tests. J Stat Softw. 2014;61(8):1–36.

	33.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of 
a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD): the TRIPOD statement. Ann Int Med. 2015;162(1):55–63.

	34.	 Moseby-Knappe M, Westhall E, Backman S, Mattsson-Carlgren N, 
Dragancea I, Lybeck A, et al. Performance of a guideline-recommended 
algorithm for prognostication of poor neurological outcome after cardiac 
arrest. Intensive Care Med. 2020.

	35.	 Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, 
et al. Neuron-specific enolase as a predictor of death or poor neurological 
outcome after out-of-hospital cardiac arrest and targeted temperature 
management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 
2015;65(19):2104–14.

	36.	 Martinell L, Nielsen N, Herlitz J, Karlsson T, Horn J, Wise MP, et al. Early 
predictors of poor outcome after out-of-hospital cardiac arrest. Critical 
care (London, England). 2017;21(1):96-.

	37.	 Pareek N, Kordis P, Beckley-Hoelscher N, Pimenta D, Kocjancic ST, Jazbec 
A, et al. A practical risk score for early prediction of neurological outcome 
after out-of-hospital cardiac arrest: MIRACLE2. Eur Heart J. 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pypi.org/project/BorutaShap/
https://pypi.org/project/BorutaShap/

	Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Study population and variables
	Outcome
	Model development
	Statistical analysis methods

	Results
	Discussion
	Conclusion
	References


