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Abstract 

Background:  There is a paucity of data concerning the optimal ventilator management in patients with COVID-
19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed 
to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 
pneumonia.

Methods:  A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hos-
pital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. 
The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compart-
ment at the two PEEP levels on CT scan.

Results:  Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 
[0.7–4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system com-
pliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared 
to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not 
different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with avail-
able gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD − 9 ml/
cmH2O, 95% CI from − 12 to − 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD − 0.1, 95% CI from − 0.3 to − 0.1, 
p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change 
PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from − 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not 
correlated with improvement of oxygenation or venous admixture.

Conclusions:  In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. 
These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use 
of higher PEEP levels.
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Introduction
Over the last months, the global pandemic from coro-
navirus disease 2019 (COVID-19) has posed important 
challenges to intensive care unit (ICU) physicians [1, 2]. 
A significant proportion of COVID-19 patients develop 
severe hypoxemic respiratory failure requiring invasive 
mechanical ventilation [2, 3]. Although COVID-19 meets 
the clinical criteria for acute respiratory distress syn-
drome (ARDS) [4], peculiar pathophysiological features 
[5] and phenotypes have been identified in this disease 
[6]. In COVID-19 patients, chest computed tomography 
(CT) findings typically include ground glass opacities 
overlapping with areas of lung consolidation, not always 
reflecting the severity of gas-exchange impairment [7]. In 
this context, severe hypoxemia might be related not only 
to loss of aeration, but also to highly perfused ground-
glass areas [8, 9]. In COVID-19 patients with high respir-
atory system compliance and low ventilation-perfusion 
ratio ( ̇VA/Q̇ ), hypoxemia is primarily due to the V̇A/Q̇ 
mismatch, which is more related to lung perfusion regu-
lation impairment than to an increase in non-aerated tis-
sue; therefore, lung recruitability is probably low [8, 9].

Patient inclusion, data collection and clinical management
This study included all critically ill, invasively ventilated 
COVID-19 patients admitted from February 29th to 
May 15th, 2020 that underwent a two-PEEP CT scan on 
clinical indication. All patient had a positive polymerase 
chain reaction on nasopharyngeal swab specimens and 
fulfilled clinical criteria for severe COVID-19 pneumo-
nia [14, 15]. Clinical data were collected retrospectively 
from the electronic medical records. The Additional 
file 1 reports details on the two-PEEP CT clinical indica-
tions, image acquisition technique and analysis protocol. 
Patients were ventilated targeting tidal volumes of 6 mL 
per kg of predicted body weight, but increases were tol-
erated based on the driving pressure. The respiratory 
rate was titrated to maintain pH above 7.25. The clinical 
PEEP level was decided by the treating physician, aimed 
at maintaining PaO2 > 60 mmHg with the lowest possible 
plateau pressure.

Gas exchange and respiratory mechanics assessment
Blood gas analyses and ventilation parameters were col-
lected in all patients on the day of the CT scan. The venti-
latory ratio [16] was computed as:

The ventilatory ratio is an estimate of ventilation 
impairment and is known to correlate with physiologic 
dead-space fraction in COVID-19 patients [17]. A sub-
group of patients underwent a PEEP test at 8 and 16 
cmH2O at a FiO2 of 1.0 to estimate venous admixture and 
at a FiO2 of 0.5, the latter value being arbitrarily chosen 
to explore the effects of FiO2 changes on oxygenation. All 
four possible PEEP/FiO2 combinations were tested. Blood 
gas analyses and respiratory mechanics were assessed 
within 2 h from the CT scan and included estimation of 
venous admixture based on arterial and central venous 
blood gas samples (details in Additional file 1).

Protocol for two‑PEEP CT acquisition and analysis
Patients received non-contrast chest CT scan at PEEP 8 
cmH2O during expiratory breath-hold, then PEEP was 
increased to 16 cmH2O and the CT scan repeated after 
around 1  min of ventilation with PEEP 16 cmH2O and 
unchanged tidal volume, resulting in plateau pressures 
ranging from 25 to 35 cmH2O. No recruitment maneuver 
was performed. Lung parenchyma and vessel segmenta-
tions were obtained using multi-resolution convolutional 
neural networks [18], followed by manual refinement 
if necessary. Also, three regions of interests (ROIs) of 
equal lung tissue weight [19, 20] were obtained along the 

Ventilatory Ratio =
minute ventilation(ml/min)× PaCO2

(

mmHg
)
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(
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)

× 100× 37.5 mmHg

To date, no specific recommendations are available 
concerning the optimal PEEP levels in invasively ven-
tilated COVID-19 patients [10]. It has been suggested 
that COVID-19-associated ARDS might share common 
features with ordinary ARDS [11], in which the use of 
higher PEEP levels is frequently advocated [12], even if 
this strategy is not supported by the findings of recent 
trials [13]. Nevertheless, the pathophysiology of COVID-
19 seems to differ from that of ARDS [9] and limited 
physiological data is available on PEEP response in severe 
COVID-19 patients. We therefore conducted an observa-
tional study with the aim to investigate the effect of two 
levels of PEEP (8 and 16 cmH2O) on alveolar recruitment 
in severe COVID-19 patients. We hypothesized that the 
PEEP increase resulted in limited alveolar recruitment in 
COVID-19 patients.

Methods
This cohort study was carried out in a university-affil-
iated hospital in Genoa, Italy. The ethics review board 
approved the protocol of the study (Comitato Etico 
Regione Liguria, protocol n. 163/2020) and the need for 
written informed consent was waived for retrospectively 
collected data. According to local regulations, consent 
was delayed after discharge for prospectively collected 
data in unconscious patients.
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ventral-dorsal and craniocaudal axes. Lung was divided 
into hyper-, normally, poorly, and non-aerated compart-
ments, according to conventional thresholds [21]. Alveo-
lar recruitment was defined as the percent of lung weight 
accounted for by non-aerated tissue in which aeration 
was restored increasing PEEP from 8 to 16 cmH2O, i.e.,

We defined patients in the fourth quartile of alveolar 
recruitment as “recruiters”. The lung excess lung weight 
was calculated as percent difference of the CT-measured 
lung weight at 8 cmH2O PEEP compared to the expected 
CT lung weight of a supine healthy patient, as follows:

where Lung weightexpected
(

g
)

= −1806.1+ 1633.7× height(m) 
[22]. Dynamic lung strain was calculated as the ratio of 
the tidal volume to the end-expiratory gas volume meas-
ured by CT scan.

Subgroup and sensitivity analyses
To investigate the differences between phenotypes, 
we classified patients as “higher compliance” or “lower 
compliance” based on the respiratory system compli-
ance on the day of CT scan assessed at the clinical PEEP 
level, with a cut-off of 40  ml/cmH2O, the median value 
reported in a recent study [11]. As a sensitivity analysis, 
we computed alveolar recruitment as percent change of 
non- and poorly-aerated compartments [21]. We also 
investigated the time-dependency of alveolar recruitment 
and respiratory system compliance exploring their corre-
lations with the time elapsed from the onset of symptoms 
and initiation of invasive ventilation.

Statistical analysis
The primary endpoint of the study was alveolar recruit-
ment. Data are reported as median [interquartile range], 
if not otherwise specified. We compared data between 
groups with the Mann–Whitney U or Fisher’s exact 
test, as appropriate. Variables acquired at two PEEP lev-
els were compared with the Wilcoxon signed-rank test. 
Correlations were sought using the Spearman’s rho. We 
computed median differences (MD) with their 95% con-
fidence intervals (CI) using the Hodges–Lehman estima-
tor. An a priori sample size calculation was not feasible 
due to the lack of data on quantitative CT analysis in 
COVID-19 patients, but our sample size was similar to 

Alveolar recruitment =

(

Nonaerated lung tissuePEEP 8 cm H2O
−Nonaerated lung tissuePEEP 16 cm H2O

Total lung weightPEEP 8 cm H2O

)

×100

Excess lung weight(%) =
Lung weightmeasured, PEEP 8 cm H2O

− Lung weightexpected

Lung weightexpected
×100,

previous physiologic studies in ARDS [21, 23–25]. All 
statistical analyses were performed in SPSS Statistics, 
Version 25.0 (IBM Corp., Armonk, NY, USA). Signifi-
cance was assumed at two-tailed p < 0.05.

Results
Population description
Of 88 patients invasively ventilated in the study period, 
42 received a two-PEEP CT scan and were included in 
this analysis (patient inclusion flow in the Additional 

file 1, eFigure 1); clinical characteristics on the day of CT 
are reported in Table  1. Gas-exchange and respiratory 
mechanics at both PEEP levels were analyzed in a sub-
group of 20 patients, whose characteristics were compa-
rable to those of the rest of the cohort (Additional file 1, 
eTable 1).

Alveolar recruitment and effects of PEEP on CT parameters
Alveolar recruitment was 2.7 [0.7–4.5] % of the total lung 
weight or 39 [9–81] g; its distribution is reported in Fig. 1. 
Excess lung weight was 57 [24–75] % or 528 [240–818] g 
and was correlated with the amount of non-aerated tis-
sue (ρ = 0.607, p < 0.001—Additional file  1, eFigure  2). 
Ten patients were classified as “recruiters”, having alveo-
lar recruitment above the third quartile (4.5%). We did 
not identify differences in the clinical characteristics of 
recruiters vs. non-recruiters (Table  1). Increasing PEEP 
from 8 to 16 cmH2O resulted in a modest reduction in 
non-aerated tissue, paralleled by an increase in normally 
aerated and hyper-aerated tissue in both groups, while 
poorly aerated tissue decreased only in non-recruiters 
(Fig.  2 and Table  2). Figure  3 shows the distribution of 
lung aeration along the Hounsfield units scale at both 
PEEP levels. Non-aerated areas were predominantly 
located in dorsal and caudal regions (Additional file  1, 
eFigure  3). Lung dynamic strain was low and was fur-
ther decreased by increasing PEEP (Table 2). The median 
PEEP-induced increase in lung gas content, proportional 
to the increase in lung static strain, was 403 ml (95% CI 
from 348 to 458 ml). Alveolar recruitment was not asso-
ciated with disease severity as assessed by excess lung 
weight, PaO2/FiO2 ratio or respiratory system compliance 
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(Additional file 1, eFigure 4). We did not observe correla-
tions between alveolar recruitment or excess lung mass 
and inflammatory and thrombophilia markers (Addi-
tional file  1, eTable  2). Alveolar recruitment defined as 
change in the sum of poorly- and non-aerated compart-
ments was 4.3 [2.9–6.1] % of the total lung weight and no 
differences were observed in lower vs. higher compliance 
groups (4.2 [2.6–6.0] % vs. 4.4 [3.6–6.6] %, p = 0.402).

Data on gas exchange and respiratory mechanics at two 
PEEP levels
As illustrated in Fig.  4, in patients with available data 
on gas-exchange and respiratory mechanics at two 
PEEP levels (N = 20), incrementing PEEP from 8 to 
16 cmH2O increased the PaO2 when FiO2 = 0.5 (MD 
24 mmHg, 95% CI from 12 to 51 mmHg, p = 0.003), but 
not when FiO2 = 1.0 (MD 7  mmHg, 95% CI from − 12 

Table 1  Patients’ characteristics on the day of CT scan

Gas exchange and ventilator settings measured at the clinical PEEP level

IQR interquartile range, PBW predicted body weight, PEEP positive end-expiratory pressure, ICU intensive care unit

Parameter All (N = 42) Non-recruiters (N = 32) Recruiters (N = 10) p

Age, median [IQR], years 63 [58–67] 64 [58–67] 65 [58–66] 0.782

Predicted body weight, median [IQR], kg 70 [61–73] 70 [61–71] 72 [70–75] 0.102

Body mass index, median [IQR], kg/m2 28 [25–31] 28 [25–31] 28 [26–29]  > 0.999

Male sex, N (%) 33 (78.6) 24 (75.0) 9 (90.0) 0.416

Time from symptoms onset, median [IQR], days 23 [13–28] 23 [13–29] 20 [17–25] 0.631

Time from first confirmed swab, median [IQR], days 15 [10–23] 17 [9–24] 13 [10–20] 0.738

Time from start of invasive ventilation, median [IQR], days 9 [4–13] 9 [4–14] 7 [3–11] 0.328

Comorbidities

Hypertension, N (%) 24 (57.1) 18 (56.3) 6 (60.0)  > 0.999

Cardiovascular disease, N (%) 5 (11.9) 3 (9.4) 2 (20.0) 0.577

Smoker, N (%) 1 (2.4) 1 (3.1) 0 (0.0)  > 0.999

Former smoker, N (%) 5 (11.9) 5 (15.6) 0 (0.0) 0.315

Chronic kidney failure, N (%) 1 (2.4) 1 (3.1) 0 (0.0)  > 0.999

Diabetes, N (%) 5 (11.9) 5 (15.6) 0 (0.0) 0.315

Obesity, N (%) 11 (26.2) 8 (25.0) 3 (30.0)  > 0.999

Ventilator settings

Tidal volume, median [IQR], ml/kg PBW 7.2 [6.3–7.9] 7.3 [6.3–8.0] 6.9 [6.2–7.6] 0.494

Respiratory rate, median [IQR], 1/min 19 [17–25] 18 [16–25] 22 [19–24] 0.273

PEEP, median [IQR], cmH2O 10 [8–12] 10 [8–12] 10 [8–13] 0.988

Plateau pressure, median [IQR], cmH2O 24 [21–28] 24 [22–28] 24 [20–27] 0.782

FiO2, median [IQR] 0.60 [0.50–0.70] 0.68 [0.60–0.70] 0.55 [0.50–0.65] 0.138

Respiratory system compliance, median [IQR], ml/cmH2O 36 [29–50] 35 [29 –50] 40 [35–45] 0.631

Blood gas analysis

pH, median [IQR] 7.43 [7.36–7.48] 7.42 [7.35–7.47] 7.46 [7.43–7.49] 0.052

PaO2, median [IQR], mmHg 73 [64–91] 73 [65–92] 69 [64–86] 0.475

PaCO2, median [IQR], mmHg 48 [43–56] 51 [44–58] 41 [36–51] 0.052

PaO2/FiO2, median [IQR], mmHg 123 [100–160] 123 [98–155] 139 [103–205] 0.494

Lactate, median [IQR], mmol/L 1.1 [0.8–1.8] 1.2 [0.8–2.0] 1.1 [1.0–1.6] 0.782

Ventilatory ratio 1.8 [1.5–2.4] 2.0 [1.5–2.6] 1.8 [1.6–1.8] 0.494

Blood analyses

D-dimer, median [IQR], ug/L 1647 [1048–4426] 1618 [938–4195] 1754 [1304–4426] 0.695

C reactive protein, median [IQR], mg/L 42 [17–108] 44 [19–110] 41 [17–60] 0.531

Procalcitonin, median [IQR], ug/L 0.21 [0.09–0.97] 0.25 [0.09–1.44] 0.21 [0.07–0.33] 0.423

Interleukin-6, median [IQR], ng/L 127 [55–387] 134 [55–339] 112 [16–453] 0.873

Creatinine, median [IQR], mg/dL 0.9 [0.7–1.7] 0.9 [0.6–1.7] 1.0 [0.7–1.5] 0.652

Hemodynamics

Heart rate, median [IQR], 1/min 82 [70–100] 85 [72–103] 73 [68–90] 0.494

Mean arterial pressure, median [IQR], mmHg 82 [73–93] 83 [77–102] 80 [73–85] 0.551

Ventilator-associated pneumonia, N (%) 12 (28.6) 11 (34.3) 1 (10.0) 0.233
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to 49 mmHg, p = 0.257). Maintaining PEEP at 8 cmH2O, 
increasing FiO2 from 0.5 to 1.0 increased the PaO2 (MD 
103  mmHg, 95% CI from 55 to 156  mmHg, p < 0.001). 
Increasing PEEP from 8 to 16 cmH2O slightly reduced 
the venous admixture (MD − 3.5%, 95% CI from − 6.2% 
to − 0.4%, p = 0.027) and the ventilatory ratio (MD − 0.1, 

95% CI from − 0.3 to − 0.1, p = 0.003, Additional file 1, 
eFigure 5), but decreased the respiratory system compli-
ance (MD − 9 ml/cmH2O, 95% CI from − 12 to − 6 ml/
cmH2O, p < 0.001). Improvement of oxygenation and 
venous admixture were not associated with alveolar 
recruitment (Additional file 1, eFigure 6).

Characteristics of patients with higher versus lower 
compliance
Patients in the lower compared to higher compliance 
group had a longer time elapsed from the onset of symp-
toms and were ventilated with lower tidal volumes and 
higher plateau pressures (Additional file  1, eTable  3). 
Alveolar recruitment was similar in lower vs. higher 
compliance groups (2.5 [0.6–4.4] % vs. 3.0 [0.8–4.7] %, 
p = 0.780). Excess lung weight was similar in lower vs. 
higher compliance groups (52 [21–73] % vs. 57 [28–80] 
%, p = 0.799).

Time‑dependency of alveolar recruitment and respiratory 
system compliance
Time from the onset of symptoms and onset of invasive 
ventilation was similar in recruiters versus non-recruiters 
(Table  1), while patients in the lower compliance group 
had a longer time elapsed from the first confirmed swab 
and onset of symptoms (Additional file 1, eTable 3). The 
respiratory system compliance had a negative correlation 
with the days elapsed from the onset of symptoms (ρ = − 
0.407, p = 0.007) but not with the duration of invasive 
ventilation (ρ = − 0.134, p = 0.397). Alveolar recruitment 
did not correlate with the time elapsed from the onset of 
symptoms (ρ = 0.058, p = 0.716) nor with the duration of 
invasive ventilation (ρ = − 0.013, p = 0.935).

Discussion
The main findings of this study were that, in critically 
ill mechanically ventilated patients with severe COVID-
19 pneumonia, alveolar recruitment induced by changes 
of PEEP from 8 cmH2O to 16 cmH2O was: (1) mini-
mal and independent of the respiratory system compli-
ance; (2) prevalent in the dependent and caudal lung 
regions; (3) not correlated with the excess lung weight; 
and (4) not associated with changes in gas-exchange, res-
piratory mechanics and laboratory parameters. Higher 
PEEP improved oxygenation at FiO2 0.5 but not 1.0 and 
decreased respiratory system compliance.

Patients included in the present study had severe 
hypoxemic respiratory failure at ICU admission and at 
the time of CT scan. We assessed alveolar recruitment 
as changes in the non-aerated compartment, using clas-
sically adopted CT attenuation thresholds [21, 23–25]. 
The two levels of PEEP selected in the present study, 
i.e., 8 and 16 cmH2O, were the boundaries of the range 
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of PEEP received by most COVID-19 patients [26], and 
similar to previous studies investigating alveolar recruit-
ment in ARDS, where 5 and 15 cmH2O were used [25]. 
The lower level of PEEP in our study was set at 8 cmH2O 
due to safety concerns related to the reduction in PEEP to 
5 cmH2O in severely hypoxemic COVID-19 patients.

Spontaneously breathing healthy subjects have an 
average lung weight of around 930 g [22]. In our cohort, 
lung weight was 1500  g and end-expiratory gas volume 
1360  ml, values similar to those reported in studies on 
ARDS not related to COVID-19 [21, 25]. The gas vol-
ume was similar to that reported in a recent study, show-
ing that when classical ARDS was compared at similar 
PaO2/FiO2 or compliance, the gas volume was higher in 
COVID-19 [5]. This is in line with a recent study compar-
ing twenty-seven COVID-19 patients with an historical 
cohort of classical ARDS [11]. However, another study 
comparing COVID-19 ARDS with ARDS from other 
causes concluded that, when patients were matched 
based on their PaO2/FiO2 ratio or respiratory system 
compliance, the two pathologies had substantial differ-
ences with potential implications to the optimal venti-
lator management [5]. In patients with classical ARDS, 
the overall lung weight is increased compared to nor-
mal patients, due to increased edema distributed along 
a ventral-dorsal gradient [27]. This leads to increased 

pressures acting on the dependent lung regions and pro-
gressive atelectasis formation [27, 28]. The application of 
PEEP counterbalances the effects of increased superim-
posed pressure on most dependent alveoli [29], keeping 
them open and improving respiratory system compli-
ance and gas-exchange. The median amount of alveolar 
recruitment from 8 to 16 cmH2O PEEP in our COVID-
19 cohort was less than 3% of the total lung mass. This 
value is lower than the lung tissue recruited from 5 to 
15 cmH2O PEEP in classical ARDS, which ranged from 
8 to 15% of lung weight [21, 25] or 21% of lung volume 
[23] in early studies. Moreover, these studies reported 
high inter-subject variability in classical ARDS, while 
we observed a homogeneously low recruitment poten-
tial in our cohort. In line with our results, previous stud-
ies found that PEEP-induced alveolar recruitment was 
lower in patients with primary as compared to a second-
ary insult to the lung [30]. In a study in ten COVID-19 
patients measuring recruitment from 5 to 15 cmH2O 
PEEP with electric impedance tomography, the recruited 
lung volume was around 300 ml with high inter-individ-
ual variability [31]. However, it is difficult to compare this 
value to our results because of the different imaging tech-
nique adopted, analyzing only one juxta-diaphragmatic 
slice. The application of PEEP 16 cmH2O also  increased  
hyperaeration, especially in presence of less excess lung 

Table 2  Quantitative CT analysis parameters

Data are presented as median [interquartile range]

PEEP positive end-expiratory pressure, HU Hounsfield Units, IQR interquartile range, CI confidence interval

*Signigicant difference between PEEP levels, p < 0.05

Parameter All (N = 42) Non-recruiters (N=32) Recruiters (N=10)

PEEP 8 cmH2O PEEP 16 
cmH2O

p PEEP 8 cmH2O PEEP 16 
cmH2O

p PEEP 8 cmH2O PEEP 16 
cmH2O

p

Total lung 
volume (ml)

3076 [2610–
3810]

3461 [2982–
4190]

<0.001* 3120 [2687–
3727]

3575 [3107–
4150]

<0.001* 2619 [2331–
3907]

2953 [2454–
4645]

0.005*

Total lung 
weight (g)

1515 [1295–
1811]

1539 [1336–
1852]

0.866 1504 [1274–
2091]

1520 [1322–
2126]

0.080 1532 [1302–
1773]

1455 [1244–
1728]

0.116

     Excess lung 
weight (%)

56.6 [24.0–74.8] 56.7 [23.2–90.5] 55.0 [26.3–
59.59]

Gas volume 
(ml)

1360 [1064–
2118]

1858 [1301–
2599]

<0.001* 1448 [1105–
2159]

1931 [1459–
2583]

<0.001* 1216 [701–
2115]

1540 [1085–
2957]

0.005*

Mean attenua-
tion (HU)

-526 [-591–-
329]

-565 [-637–-
404]

<0.001* -549 [-616–-
333]

-581 [-644–-
405]

<0.001* -434 [-541–-
301]

-539 [-634–-
379]

0.005*

Hyper-aerated 
mass (g)

14 [7–28] 23 [12–39] <0.001* 17 [8–29] 26 [13–39] <0.001* 12 [5–17] 17 [8–43] 0.005*

Normally aer-
ated mass (g)

367 [259–465] 424 [347–528] <0.001* 375 [307–462] 440 [366–532] <0.001* 331 [190.9–
504.4]

383 [267.4–
520.3]

0.005*

Poorly aerated 
mass (g)

504 [391–671] 487 [346–673] <0.001* 504 [388–687] 496 [349–683] 0.001* 477 [393.9–
587.5]

433 [328.1–
580.8]

0.093

Non aerated 
mass (g)

625 [377–810] 576 [354–775] <0.001* 564 [375–785] 581 [350–854] 0.014* 737 [515.7–
819.1]

573 [435.2–
710.4]

0.005*

Dynamic lung 
strain

0.33 [0.23–0.46] 0.26 [0.19–0.35] <0.001* 0.33 [0.24–0.43] 0.25 [0.19–0.3] <0.001* 0.41 [0.22–0.63] 0.33 [0.16–0.45] <0.005*
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weight, as reported in classical ARDS patients [23]. 
As a consequence, the increase in PEEP from 8 to 16 
cmH2O yielded   a  worsening of the respiratory system 
compliance in our cohort of COVID-19 patients. Alveo-
lar recruitment was not associated with higher levels of 
inflammatory markers, D-dimer and respiratory system 
compliance.

These findings support the concept that PEEP might 
improve oxygenation in COVID-19 by altering the V̇ /Q̇  
matching in areas with low V̇A/Q̇ , rather than through 
recruitment. This suggests caution in applying PEEP lev-
els higher than those strictly necessary to maintain oxy-
genation. We observed a decrease in respiratory system 
compliance among patients at more advanced stages of 
the disease, not reflected by increased recruitment. This 
is compatible with a natural history of the disease based 
on fibrotic mechanisms, rather than worsening of edema. 
Our findings suggest that COVID-19 pneumonia acts as 
a typical primary pneumonia [32], as also confirmed by 
autopsy findings, which reported injury in the alveolar 
epithelial cells, hyaline membrane formation, and hyper-
plasia of type II pneumocytes, diffuse alveolar damage 
and consolidation due to fibroblastic proliferation with 
extracellular matrix and fibrin forming clusters in air-
spaces and capillary vessel [33]. We speculate that, dif-
ferently from classical ARDS, in COVID-19 pneumonia, 
the non-aerated lung regions are poorly recruitable due 
to the fact that they do not represent atelectasis, but alve-
olar spaces substituted by fibrosis and mucinous filling, 
cellular debris and necrotic tissue reflecting pneumo-and 
vascular lysis [34–36].

Some limitations of our study should be addressed. In 
our center, CT scan and evaluation of PEEP was routinely 
performed in a high proportion of patients with COVID-
19 pneumonia for clinical purposes, but only when CT 
was indicated and in sufficiently stable patients. The 
main reasons for exclusion were clinical instability and 
need for contrast-enhanced CT. The timing of CT scans 
was based on clinical indication, resulting in heterogene-
ity of included patients, and we cannot rule out that, in a 
proportion of patient, bacterial co-infection might have 
played a role in defining the radiological findings and 
the response to PEEP [37]. However, this is representa-
tive of the population of a COVID-19 ICU. Only two 
arbitrary levels of PEEP were investigated for technical 
reasons and patient safety concerns. While we cannot 
exclude that different ventilator setting or the addition 
of a recruitment maneuver may have led to different 
results, previous studies reported that the response to 
PEEP at two low and moderate PEEP levels correlated 
with the maximal lung recruitment achievable at higher 
PEEP [25]. Moreover, venous admixture was estimated 
from central venous line blood samples, not a pulmonary 
artery catheter.

Conclusions
In critically ill patients with severe COVID-19 pneumo-
nia, increasing PEEP from 8 cmH2O to 16 cmH2O did not 
lead to major alveolar recruitment while worsened res-
piratory mechanics. This suggests limiting PEEP strictly 
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Fig. 3  Histogram distribution of lung volume aeration along the 
Hounsfield units scale at the two PEEP levels. Data are reported 
overall (panel A) and stratified in the recruiter (panel B) and 
non-recruiter (panel C) groups. PEEP: positive end-expiratory pressure. 
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to those levels necessary to maintain oxygenation, thus 
avoiding the use of higher PEEP levels. Lung imaging 
techniques might be considered in the next future to bet-
ter assess clinical alterations in critically ill patients with 
COVID-19 pneumonia.
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