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Abstract

Objective: In septic patients, multiple retrospective studies show an association between large volumes of fluids
administered in the first 24 h and mortality, suggesting a benefit to fluid restrictive strategies. However, these
studies do not directly estimate the causal effects of fluid-restrictive strategies, nor do their analyses properly adjust
for time-varying confounding by indication. In this study, we used causal inference techniques to estimate mortality
outcomes that would result from imposing a range of arbitrary limits (“caps”) on fluid volume administration during
the first 24 h of intensive care unit (ICU) care.

Design: Retrospective cohort study

Setting: ICUs at the Beth Israel Deaconess Medical Center, 2008–2012

Patients: One thousand six hundred thirty-nine septic patients (defined by Sepsis-3 criteria) 18 years and older,
admitted to the ICU from the emergency department (ED), who received less than 4 L fluids administered prior to
ICU admission

Measurements and main results: Data were obtained from the Medical Information Mart for Intensive Care III
(MIMIC-III). We employed a dynamic Marginal Structural Model fit by inverse probability of treatment weighting to
obtain confounding adjusted estimates of mortality rates that would have been observed had fluid resuscitation
volume caps between 4 L–12 L been imposed on the population. The 30-day mortality in our cohort was 17%. We
estimated that caps between 6 and 10 L on 24 h fluid volume would have reduced 30-day mortality by − 0.6 to
− 1.0%, with the greatest reduction at 8 L (− 1.0% mortality, 95% CI [− 1.6%, − 0.3%]).

Conclusions: We found that 30-day mortality would have likely decreased relative to observed mortality under
current practice if these patients had been subject to “caps” on the total volume of fluid administered between
6 and 10 L, with the greatest reduction in mortality rate at 8 L.
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Introduction
Sepsis is a commonly encountered problem in the emer-
gency department (ED) and intensive care unit (ICU),
inflicting substantial morbidity and mortality [1, 2]. One
critical element of treating sepsis involves correcting
hypovolemia and perfusion abnormalities using intraven-
ous fluids and vasopressors. However, the optimal

dosing and timing of fluid resuscitation in patients with
sepsis remains unknown.
There is ongoing clinical debate and research in pro-

gress regarding whether to pursue a more liberal or re-
strictive fluid administration strategy [3]. The landmark
study of early goal-directed therapy (EGDT) by Rivers
et al. led to an era of liberal fluid administration [3],
particularly as follow-on studies showed improved sepsis
survival in hospitals that provided bundled sepsis care
based on EGDT [4–6]. However, a growing body of
observational literature [7–13] and several randomized
trials (two in the developing world, one unblinded pilot
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trial in Europe) [14–16] evaluating the relationship be-
tween fluid administration and mortality suggest that
large-volume fluid administration might be deleterious.
These results are unable to guide current clinical man-
agement, as there is not a convincing control for con-
founding by indication in the observational studies, and
several obstacles prevent generalization of the random-
ized trial results to sepsis patients in the developed
world [17].
To better understand the effect of different fluid resus-

citation strategies on patient outcomes, a multicenter,
phase III, randomized trial (the CLOVERS study) is cur-
rently in progress; the results of this trial will not be
available for several years [17, 18]. We believe that a
causal analysis of a large observational dataset could help
to inform the debate around fluid resuscitation decisions
in the meantime, as well as inform our interpretation of
the findings from the CLOVERS trial when they arrive.
To that end, we performed a retrospective cohort study
of ICU patients with sepsis at a tertiary center and used
causal inference techniques to obtain confounding ad-
justed estimates of mortality outcomes that would result
from imposing different limits on fluid volume adminis-
tration (“caps”) during the first 24 h of ICU care. We hy-
pothesized that certain caps on fluid resuscitation would
cause decreases in 30-day mortality (compared to
current practice) for our patient population.

Methods
Sample selection
Data were obtained from the Medical Information Mart
for Intensive Care III (MIMIC-III) [19]. The database
contains records from 38,597 distinct adult patients ad-
mitted to ICUs at the Beth Israel Deaconess Medical
Center from 2001 to 2012. The database contains de-
tailed information about vital signs, medication adminis-
tration, ventilator settings, and other granular ICU-level
data not typically available in retrospective data sets.
This study included MIMIC-III patients aged > 18

years with sepsis admitted to the ICU from the ED be-
tween 2008 and 2012 (the years when pre-admission
ICU IV fluids were documented). We selected for sepsis
patients using the definition from the Third Inter-
national Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3), which includes suspected infection (de-
fined by having both blood cultures drawn and antibi-
otics administered) and a Sequential Organ Failure
Assessment (SOFA) score ≥ 2 [20]. Data extraction ad-
hered to the original Sepsis-3 protocol [20] and a prior
study in identifying the Sepsis-3 cohort in MIMIC-III
[21]. Patients suspected of infection more than 24 h after
ICU admission were excluded, as were patients with
missing antibiotics and blood culture samples [21].

Patients with secondary (or greater) admissions were ex-
cluded to avoid repeated measures.
We excluded patients who had already received greater

than 4 L of IV fluids prior to ICU admission, as these pa-
tients would have already violated some of our treatment
strategies of interest at baseline. We excluded patients
documented as receiving 0 L of fluid in the ED, as this
likely indicated failure to record. As mentioned above,
only ED admissions were included; patients transferred
from another hospital to the ICU or admitted to the
ICU from the operating room or hospital ward were ex-
cluded. Out-of-hospital mortality dates in MIMIC-III
were obtained from the linked Social Security Adminis-
tration Death Master File.
We extracted the following variables from the MIMIC

database for all patients: baseline demographic informa-
tion (age, gender, race), ICU details (continuous vital
sign monitoring, fluid inputs and outputs, fluids and
medications administered, laboratory values, and respira-
tory support), all additional variables needed to calculate
the SOFA score, and components of the Elixhauser co-
morbidity index.

Overall analysis strategy: emulating a randomized clinical
trial
This was a retrospective causal cohort study of ICU pa-
tients with sepsis at a large tertiary center. The goal of
causal inference generally is to emulate a hypothetical
(and not necessarily practical) randomized controlled
trial (RCT) using observational data [22]. The hypothet-
ical RCT we sought to emulate in this study has many
treatment arms. In one treatment arm of the RCT, phy-
sicians would be instructed to deliver “usual care” or
“current practice,” i.e., make no modification to the
treatment decisions they would make when they are not
participating in a RCT. Care followed the Surviving
Sepsis Campaign [23] guidelines at the time. However,
because these guidelines are not strict concerning fluid
administration, there was a good deal of practice vari-
ability. Each other treatment arm would correspond to a
different cut-off or cap on total fluid volume received by
the end of the first 24 h after ICU admission. The caps
range from 4 L to 12 L. Patients randomly assigned to a
treatment arm would be treated according to usual care
until they approached the arm’s fluid volume cap, at
which point they would be prevented from receiving any
further fluids. (If a patient assigned to a fluid cap of 5 L,
for example, would not exceed 5 L of fluids under usual
care, then their treatment would not be altered by
participation in the RCT.) “Baseline” for our hypothetical
RCT is ICU admission, and the inclusion and exclusion
criteria are described in the “Sample selection” section.
Our study estimates the 30-day mortality that would be
observed in each arm of this hypothetical RCT.
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The unadjusted observed mortality rate in the cohort
is an unbiased estimate of the mortality rate that would
be observed in the usual care arm of our ideal RCT. The
primary challenge of estimating the mortality rates in
the other counterfactual RCT arms from observational
data is confounding—that is, the tendency for patients
to receive differential amounts of fluids because they
had different clinical characteristics or comorbidities
that were associated with the outcome. Our objective
was therefore to obtain confounding-adjusted estimates
of the mortality rates that would have been observed
had fluid volume cutoffs between 4 L and 12L been im-
posed on the population.

Confounding-adjusted estimate of mortality rates
We fit a dynamic Marginal Structural Model (dyn-
MSM) to estimate our causal quantities of interest [24,
25]. We adjusted for confounding, i.e., accounted for the
fact that patients who follow different treatment strat-
egies tend to have different characteristics, by inverse
probability of treatment weighting [25–27]. Here, we
give a brief intuitive description of the method, which
we describe in more technical detail in Additional file 1.
Estimation of causal effects and quantification of uncer-
tainty proceed in three steps.

Step 1: Separately estimate mortality rate under each
cap. To estimate the counterfactual mortality rate
under a particular fluid resuscitation cap, we take the
weighted average of mortality among patients whose
fluid volumes were actually under the cap, weighting
each patient appropriately so that they represent not
only themselves but also all similar patients who
exceeded the cap. Appropriate weighting requires a
predictive model for the probability of remaining below
the cap at each time given patient history of
confounders up to that time. Each patient’s weight is
then the inverse of the product of these probabilities
over all time steps. We used a boosted trees model to
generate the probabilities [28].
Step 2: Smooth the separate counterfactual mortality
rate estimates. Having obtained separate estimates of
counterfactual population mortality rates
corresponding to a range of fluid volume caps, we next
incorporate the assumption that mortality rate varies
smoothly as a function of fluid volume cap. This allows
us to “borrow strength” across estimates of mortality
under different caps and improve the precision of our
estimates for all caps. We specify that counterfactual
mortality rate as a function of volume cap is described
by a spline regression function. Details of estimation of
the coefficients of the spline are left to Additional file 1.
Given the spline coefficient estimates, we estimate
counterfactual mortality under any volume cap by

simply plugging the volume cap value into the spline
function.
Step 3: Quantifying uncertainty. We repeat steps 1 and
2 on 500 bootstrap samples of the data to obtain
confidence intervals for the estimated effect of each
cap. We obtain a simultaneous confidence interval over
all caps in the range using the method from Appendix
C of [29].

For our results to have a causal interpretation, it is im-
portant that the covariate history input to the predictive
model in step 1 contains all variables that are (1) import-
ant drivers of fluid treatment decisions and (2) associ-
ated with mortality. Since essentially every variable in
our dataset is associated with mortality, our focus in co-
variate selection was to include all drivers of treatment.
We included both baseline and time-varying variables.
Baseline variables were age, gender, ethnicity, weight,
body mass index, service unit, Elixhauser comorbidities,
and fluid volume administered prior to ICU admission.
Time-varying variables included vital signs, lab values
(platelets, creatinine, lactate), fluid volume administered
in the previous hour, total fluid volume through the pre-
vious hour, urine output, Glasgow Coma Scale (GCS;
both combined score and individual components), SOFA
score (combined score and individual components), esti-
mated 30-day mortality (based on a boosted trees pre-
dictive model fit to pre-treatment variables), and
respiratory interventions (oxygen therapy, non-invasive
and invasive mechanical ventilation). For each time-
varying variable, we adjusted for its most recently mea-
sured value, time since it was last measured, its value the
previous hour, and its running mean, maximum, and
minimum. For a full list of variables that we adjusted
for, see Appendix B in Additional file 1.
Our constructed dataset contained a row for each hour

after admission for each patient. At each hour, the most
recent measurement of each variable was recorded, as
this is the value that the doctor is aware of and might in-
fluence treatment decisions. For each variable, time
points prior to any measurements were entered as “NA”
to indicate “not available,” also reflecting the doctor’s
knowledge about those variables at the time. Boosted
trees accept NAs as inputs and estimate probabilities
conditional on missingness. Covariate measurements
made in the same hour as but following a treatment ac-
tion (i.e., a shift in fluid resuscitation rate) were shifted
to the following hour so as not to adjust for post-
treatment variables.
As a sensitivity analysis, we repeated our analysis

under alternative modeling decisions. We imputed all
missing covariate values through multiple imputation
and applied logistic regression to estimate treatment
probabilities when computing inverse probability of
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treatment weights. The details of this approach are de-
scribed in Appendix D in Additional file 1.

Results
The MIMIC-III database contained 5784 adult patients
meeting Sepsis-3 criteria upon ICU admission between
2008 and 2012 [21]. Among these sepsis patients, 4091
patients were admitted to the ICU from the ED. There
were 765 patients who were excluded for receiving more
than 4 L of IV fluid prior to ICU admission, and 1687
patients were recorded as receiving 0 L pre-ICU fluid
and were also excluded. The remaining 1639 patients
comprising our cohort (see Fig. 1) received a median of
3.5 L IVF (interquartile range, 1.6–6.7); the distribution
of fluid volumes is shown in Fig. 2. Patients received a
broad range of IV fluids during the first 24 h, primarily
traditional crystalloid solutions (0.9% sodium chloride, lac-
tated Ringer’s, or variations). Characteristics of the patient
population broken down by fluid volume are shown in
Table 1. Observed mortality in our cohort was 17%.
We also report estimated mortality under a range of

fluid volume caps. For each volume between 4 L and 12
L (X-axis), Fig. 3 shows the estimated effect on 30-day
mortality compared to current practice (Y-axis) had total
fluids through the first 24 h after ICU admission been

capped at that volume. Negative values on the Y-axis
correspond to reductions in mortality. Caps between
about 6 L and 10 L are estimated to reduce mortality rate
by approximately 1%, with the 30-day mortality rate
under current practice approximately 17%. Expected ef-
fects on mortality for selected fluid caps are shown in
Table 2. Volume caps near 8 L are estimated to lower
mortality rates most (Table 2). Harmful effects are least
compatible with the data for caps between 8 L and 10 L.
However, the data are consistent with negligible benefi-
cial effect sizes even in this range.
Beyond 12 L, caps are estimated to have little to no ef-

fect compared to current practice, which is natural given
the fact that few patients received that much fluid under
current practice (see the histogram in Fig. 1), and hence
few patients would have their treatment altered by such
high-volume caps. Effects of caps at lower volumes have
higher associated uncertainties because relatively few
sick patients were actually treated in accordance with
these caps, making it more uncertain what would hap-
pen if they had been.
Table 3 in Appendix B in Additional file 1 reports the

relative feature importance of the most important covar-
iates in our boosted trees treatment prediction model
used for confounding adjustment by inverse probability
weighting [30, 31]. Variables assigned high importance
were useful for predicting treatment and were likely well
adjusted for as confounders. To the extent that variables
thought to be important confounders appear in this
table, it is a reassuring indication that we appropriately
adjusted for confounding bias by observed variables.
Results of a sensitivity analysis employing multiple im-

putation for missing data and logistic regression for our
treatment probability model can be found in Appendix
D of Additional file 1. They were very similar to those
presented in the main body of the paper.

Discussion
In this causal cohort study in a large critical care data-
base, we found that 30-day mortality would have likely
decreased relative to observed mortality under current
practice if the patients in our cohort were subjected to
“caps” on the total volume of fluid administered by the
end of the first 24 h in the ICU. Specifically, we found
that caps between 6 and 10 L would lead to the most
pronounced reductions in 30-day mortality, with the
greatest reduction at 8 L (− 1.0% mortality, 95% CI − 1.6
to − 0.3%). An important strength of this study com-
pared to past work was the use of causal inference
methods to rigorously adjust for time-varying confound-
ing in observational data.
As we hypothesized, we found a beneficial effect of

fluid resuscitation caps on 30-day mortality. We believe
this is due to the deleterious effects of excessive fluid

Fig. 1 Cohort construction flow chart
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Fig. 2 Distribution of fluid volumes received in the first 24 h. Distribution of total fluid volume administered by 24 h after ICU admission in our cohort

Table 1 Cohort summary

Characteristics Mean (sd) among
patients with total
fluids < 4 L (N = 786)

Mean (sd) among
patients with total
fluids < 6 L (N = 1241)

Mean (sd) among
patients with total
fluids < 8 L (N = 1480)

Mean (sd) among
patients with total
fluids < 10 L (N = 1579)

Mean (sd)
among all
patients
(N = 1639)

Proportion male 0.50 0.54 0.54 0.54 0.54

Mean (sd) MAP (mmHg) 83 (16) 84 (17) 83 (18) 83 (19) 83 (19)

Mean (sd) weight (Kgs) 80 (31) 81 (29) 81 (28) 81 (28) 81 (28)

Mean (sd) age (years) 69 (18) 68 (18) 67 (18) 67 (18) 67 (18)

Mean (sd) SOFA 6.4 (2.8) 6.7 (3.0) 7.0 (3.1) 7.1 (3.2) 7.3 (3.3)

Mean (sd) Cardiovascular SOFA subscore 1.1 (0.8) 1.2 (1.0) 1.3 (1.1) 1.3 (1.1) 1.4 (1.2)

Mean (sd) renal SOFA subscore 2.5 (1.5) 2.4 (1.6) 2.4 (1.5) 2.5 (1.5) 2.5 (1.5)

Mean (sd) CNS SOFA subscore 1.6 (1.4) 1.8 (1.4) 1.8 (1.5) 1.8 (1.5) 1.9 (1.5)

Mean (sd) respiration SOFA subscore 0.5 (1.1) 0.6 (1.1) 0.6 (1.1) 0.6 (1.1) 0.7 (1.2)

Mean (sd) coagulation SOFA subscore 0.4 (0.8) 0.5 (0.8) 0.5 (0.8) 0.5 (0.8) 0.5 (0.8)

Mean (sd) liver SOFA subscore 0.3 (0.7) 0.3 (0.8) 0.4 (0.8) 0.4 (0.8) 0.4 (0.8)

Proportion Caucasian 0.74 (0.4) 0.73 (0.4) 0.73 (0.4) 0.73 (0.4) 0.73 (0.4)

Mean (sd) Elixhauser 2.4 (1.5) 2.4 (1.5) 2.4 (1.5) 2.4 (1.5) 2.4 (1.5)

Mean (sd) GCS (baseline) 12.9 (3.4) 12.4 (3.8) 12.2 (4.0) 12.2 (4.0) 12.2 (4.1)

Mean (sd) pre-ICU fluid volume (L) 1.4 (0.8) 1.8 (1.0) 2.0 (1.1) 2.1 (1.1) 2.1 (1.1)

Proportion with metastatic cancer 0.06 0.06 0.07 0.07 0.06

Proportion with diabetes 0.06 0.06 0.06 0.06 0.06

Proportion starting vasopressors in first 24 h 0.12 0.18 0.22 0.24 0.26

Proportion initiating MV in first 24 h 0.30 0.35 0.36 0.37 0.38

Characteristics of patients in the cohort broken down by cap on total fluids received by the end of the first 24 h in the ICU. SOFA subscores are computed as
maxima over the first 24 h, and SOFA is computed as their sum
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resuscitation in septic patients and that our study adds
to mounting evidence that large positive fluid balances
are harmful. Potential mechanisms of this harm include
soft tissue and organ edema, worsened by endovascular
leak; this leads to respiratory, cardiac, and renal failure
[32–34]. Additionally, crystalloid resuscitation may dir-
ectly injure the glycocalyx, which could contribute to
organ failures [35].
Our findings add additional evidence to retrospective

studies suggesting that large positive fluid balances may
be deleterious [7–13]. Several authors retrospectively ad-
dress the association between exposure to positive fluid
balance at 24 h and the outcome of mortality. In a retro-
spective analysis of fluid resuscitation in 325 patients
with septic shock, Micek et al. found that patients in the
highest quartile of positive fluid balance at 24 h after
shock recognition had increased in-hospital mortality
compared with those in the first and second quartile [8].

Sadaka et al. retrospectively studied 350 adults with sep-
tic shock and found that patients with 24-h fluid positive
fluid balances of 6–12, 12–18, and 18–24 L had in-
creased mortality relative to patients with a balance of
less than 6 L [9]. de Oliveira et al. retrospectively exam-
ined the fluid balance between 24 and 48 h after first
recognition of organ dysfunction in septic patients in the
ICU and found that fluid balance > 3 L was associated
with increased hospital mortality [11].
Several other (also associational) analyses consider

slightly different exposures or outcomes than our study.
Boyd et al. retrospectively examined 12-h fluid balance
(ICU patients with septic shock, n = 778) and found that
those in the lower quartiles of fluid balance had lower
mortality [7]. Acheampong and Vincent retrospectively
examined the exposure of fluid balance in the first 7 days
(ICU patients with sepsis and at least one organ failure,
n = 173) and found an association between increasing
fluid balance and mortality [10]. Kelm et al. retrospect-
ively evaluated for signs of fluid overload on exam on
hospital day 1 (ICU patients with sepsis and at least one
organ failure, n = 405) and found that at least one sign of
fluid overload was associated with increased in-hospital
mortality [12]. Finally, Sakr et al. prospectively examined
the association between net fluid balance at 24 and 72 h
(ICU patients with sepsis and at least one organ failure,
n = 1808), finding that higher fluid balance at 72 but not
24 h was associated with increased 28-day mortality [13].
Our study builds on this literature by using causal in-

ference techniques applied to rich longitudinal data to
explicitly estimate causal effects of fluid limiting treat-
ment strategies. All observational studies are vulnerable
to confounding by indication. Our study was less suscep-
tible to this bias than past observational studies on fluid

Fig. 3 Effects of total fluids caps. Estimated effect on 30-day mortality compared to current practice (Y-axis) had total fluids through the first 24 h
after ICU admission been capped at each volume (X-axis) between 4 L and 12 L. Blue line indicates 0

Table 2 Selected treatment effect estimates

Fluid volume cap Estimated effect on 30-day mortality
compared to current practice (.95 CI)

4 L 0.1% (− 2.0%, 2.3%)

5 L − 0.4% (− 1.6%, 0.8%)

6 L − 0.7% (− 1.7%, 0.2%)

7 L − 0.9% (− 1.7%, − 0.2%)

8 L − 1.0% (− 1.6%, − 0.3%)

9 L − 0.8% (− 1.3%, − 0.2%)

10 L − 0.6% (− 1.0%, − 0.1%)

11 L − 0.4% (− 0.8%, 0.0%)

12 L − 0.4% (− 0.8%, 0.0%)

Estimated effects on 30-day mortality of selected fluid volume caps compared
to current practice
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administration for two reasons. First, the MIMIC dataset
we used in our analysis contained granular temporal detail
on a large number of clinical variables, which allowed us
to adjust for more confounding variables than past studies.
Second, exploiting the temporal detail of the MIMIC data,
we employed causal inference methods that appropriately
handled the time-varying nature of the problem. Even
where prior retrospective studies attempt to control for
patient-level variables using logistic regression [11, 12] or
proportional hazard models [7–10], these methods only
control for baseline confounders, not confounders that
evolve as the illness course progresses in the ICU. For ex-
ample, patients A and B with septic shock may have simi-
lar baseline characteristics, but at hour 12, patient A may
have improved, while patient B may have worsened. This
change in clinical condition affects the propensity of these
patients to receive further fluids between hours 12 and 24
and is also clearly associated with mortality. By using the
methods outlined above, we have accounted for such
time-varying confounding. The fact that our study pro-
duces findings consistent with prior retrospective studies
regarding fluid balance should encourage further interest
in evaluating different fluid resuscitation strategies in
RCTs. Pending evidence from RCTs, our study provides
evidence from rigorous causal analysis of high resolution
retrospective data that mortality is decreased when a fluid
cap of 6-10 L is maintained, with the greatest reduction at
around 8L. This is broadly consistent with resuscitation
volumes from the other retrospective studies above that
show relatively lower mortality.
As in any observational study, there is no guarantee

that we adjusted for all confounding variables. However,
we believe that we adjusted for the most important
drivers of treatment decisions pertaining to fluids. A
helpful exercise is to compare the results of our analysis
to what we would expect to see if we failed to adjust for
important confounders. We would expect unobserved
confounding to lead to monotonically decreasing esti-
mated mortality rates as fluid volume caps decreased,
since healthier patients tend to receive lower fluid vol-
umes. Indeed, an unadjusted analysis estimates that 4 L
fluid volume caps lead to a great reduction in mortality.
However, Fig. 3 illustrates that our adjusted analysis esti-
mated the highest mortality for the lowest fluid volume
caps, which is an encouraging (though not definitive)
sign that we successfully adjusted for confounding.
Other limitations to our study pertain to

generalizability. First, this was a study of an ICU data-
base at a single center and should be repeated with mul-
ticenter data. Second, to avoid bias, we had to exclude
patients who violated any of our treatment strategies of
interest (i.e., those who received over 4 L of fluid) before
ICU admission. Our results are thus only applicable to
the population of patients who arrive at the ICU without

having already received large volumes of fluids. It is pos-
sible that effects of fluid caps would vary in the patients
we omitted from our cohort. Third, we omitted patients
with 0 L recorded pre-ICU fluid from our main analysis
to guard against bias that might be induced by missing
pre-ICU fluid data in this subpopulation. As a sensitivity
analysis, we redid the analysis with these patients in-
cluded and obtained qualitatively similar results (see Ap-
pendix E of Additional file 1). Fourth, we would ideally
want to evaluate strategies governing treatment starting
at sepsis onset, but because we only had detailed data
beginning at ICU admission we focused on treatment
decisions from that point onward. We mitigated this
shortcoming by limiting our cohort to patients referred
from the ED, which ensured that treatment had not
begun too long before ICU admission for most patients
in our sample. Finally, our data were collected from
2008 through 2012, and the effect of imposing fluid caps
could have changed over time as fluid strategies have
evolved.
We should also make the subtle point that our results

are not necessarily estimates of the effects that would be
observed if fluid caps were issued as guidelines. This is
because we estimated the effect of abruptly cutting off
fluids if physicians reached a (range of) threshold(s) after
following usual care. If a guideline informed physicians
of a fluid cap ahead of time, they may alter their treat-
ment strategies in advance of reaching the cap in myriad
ways (e.g., start vasopressors earlier, deliver lower vol-
ume boluses from time of admission, deliver less fre-
quent boluses from time of admission, and administer
maintenance fluid at a slower rate). If the distribution of
treatment strategies in a world with a new guideline did
not resemble the distribution of treatment strategies
among patients whose care happened to be in accord-
ance with that guideline in our data, then our results
might not be good estimates of the outcomes that would
be observed under the guideline. Thus, while our results
are certainly evidence of benefit from fluid restrictive
strategies, they do not point directly to specific
guidelines.

Conclusion
In this cohort study using causal inference methods in a
large critical care database, we found that 30-day mortal-
ity would have likely decreased relative to observed mor-
tality under current practice if these patients had been
subject to “caps” on the total volume of fluid adminis-
tered between 6 and 10 L, with the greatest mortality
reduction at a cap of 8 L. Future multicenter retrospective
studies, prospective studies, and RCTs are needed to
further clarify the appropriate dose and timing of IV fluids
in resuscitating septic patients.
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