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Abstract 

Background:  Acute respiratory distress syndrome (ARDS) is heterogeneous and may be amenable to sub-phe-
notyping to improve enrichment for trials. We aimed to identify subtypes of pediatric ARDS based on whole blood 
transcriptomics.

Methods:  This was a prospective observational study of children with ARDS at the Children’s Hospital of Philadelphia 
(CHOP) between January 2018 and June 2019. We collected blood within 24 h of ARDS onset, generated expression 
profiles, and performed k-means clustering to identify sub-phenotypes. We tested the association between sub-
phenotypes and PICU mortality and ventilator-free days at 28 days using multivariable logistic and competing risk 
regression, respectively.

Results:  We enrolled 106 subjects, of whom 96 had usable samples. We identified 3 sub-phenotypes, dubbed CHOP 
ARDS Transcriptomic Subtypes (CATS) 1, 2, and 3. CATS-1 subjects (n = 31) demonstrated persistent hypoxemia, had 
10 subjects (32%) with immunocompromising conditions, and 32% mortality. CATS-2 subjects (n = 29) had more 
immunocompromising diagnoses (48%), rapidly resolving hypoxemia, and 24% mortality. CATS-3 subjects (n = 36) 
had the fewest comorbidities, also had rapidly resolving hypoxemia, and 8% mortality. The CATS-3 subtype was asso-
ciated with lower mortality (OR 0.18, 95% CI 0.04–0.86) and higher probability of extubation (subdistribution HR 2.39, 
95% CI 1.32–4.32), relative to CATS-1 after adjustment for confounders.

Conclusions:  We identified three sub-phenotypes of pediatric ARDS using whole blood transcriptomics. The sub-
phenotypes had divergent clinical characteristics and prognoses. Further studies should validate these findings and 
investigate mechanisms underlying differences between sub-phenotypes.

Keywords:  Children, ARDS, PARDS, Endotypes, Gene expression, Sub-phenotypes

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Acute respiratory distress syndrome (ARDS) is charac-
terized by acute onset of bilateral pulmonary edema and 
hypoxemia not fully explained by cardiac dysfunction 
[1, 2]. Primarily defined for adults, ARDS affects 45,000 

children in the United States annually [3], represent-
ing 10% of mechanically ventilated children in pediatric 
intensive care units (PICUs) [4], with a mortality rate of 
20% in the United States and 30% worldwide [5, 6]. There 
are no specific pharmacological therapies for adult or 
pediatric ARDS despite several trials, and supportive care 
with lung-protective ventilation [7] and fluid restriction 
[8] remains the mainstay of treatment.

ARDS is heterogeneous, with patients having distinct 
comorbidities and inciting etiologies. This heterogene-
ity has contributed to negative trial results, as therapies 
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effective in some patients are ineffective in others [9]. 
Methods to reduce heterogeneity, including sub-pheno-
typing using protein and mRNA biomarkers, have been 
proposed for improving patient selection for future clini-
cal trials [10]. Extensive work in adult ARDS has demon-
strated differential response to positive end-expiratory 
pressure [11], conservative fluid management [12], and 
simvastatin [13] depending on subtypes defined, in part, 
by protein biomarkers. By contrast, the presence of sub-
types in pediatric ARDS is largely unexplored [14].

Whole blood transcriptomics has led to significant 
insights into the heterogeneity of adult [15, 16] and 
pediatric sepsis [17, 18]. Unsupervised clustering has 
identified sepsis subtypes with differential biology, and 
potentially differential response to therapy [19]. Few gene 
expression studies have been performed in adult ARDS 
[20], and none in pediatrics. The aim of the present study 
was to identify sub-phenotypes of pediatric ARDS using 
unsupervised clustering on whole blood transcriptomics, 
hypothesizing that ≥ 2 subtypes would be identified.

Methods
Study design and subjects
This was a prospective cohort study approved by the Chil-
dren’s Hospital of Philadelphia’s (CHOP) Institutional 
Review Board between January 1, 2018 and June 30, 2019, 
with informed consent obtained prior to enrollment [21, 
22]. Inclusion criteria were (1) acute (≤ 7  days of risk 
factor) respiratory failure requiring invasive mechani-
cal ventilation, (2) arterial access, (3) age > 1 month and 
< 18 years, (4) Pao2/Fio2 ≤ 300 on 2 consecutive arterial 
blood gases separated by ≥ 1 h on positive end-expiratory 
pressure (PEEP) ≥ 5 cmh2o, and (5) bilateral infiltrates on 
radiograph. Exclusion criteria were (1) respiratory failure 
from cardiac failure (by echocardiography), (2) exacer-
bation of underlying chronic lung disease, (3) chronic 
ventilator dependence, (4) cyanotic heart disease, (5) 
ventilation for > 7 days before Pao2/Fio2 ≤ 300, (6) ARDS 
established outside of CHOP, (7) inability to obtain con-
sent, or (8) prior enrollment.

Procedures
Clinical data were recorded prospectively. Blood was col-
lected ≤ 24 h of ARDS onset (time of fulfilling all Berlin 
criteria) in PAXgene RNA tubes (BD Biosciences, San 
Jose, CA), kept overnight at room temperature up to 24 h, 
and then stored at − 20  °C for batched analysis. After 
ensuring RNA integrity, we generated gene expression 
profiles using Human Gene 2.1 ST Array (Affymetrix, 
Santa Clara, CA) and the GeneTitan instrument. Micro-
array data was background-corrected and quantile-nor-
malized using robust multi-array average for downstream 

analyses [23]. Data were uploaded to the Gene Expres-
sion Omnibus (GSE147902).

Definitions
Oxygenation index equaled: (mean airway pres-
sure × FIO2 × 100)/PaO2 (in mmHg). Vasopressor score 
[24] was: dopamine (µg/kg/min) × 1 + dobutamine (µg/
kg/min) × 1 + epinephrine (µg/kg/min) × 100 + nor-
epinephrine (µg/kg/min) × 100 + phenylephrine (µg/kg/
min) × 100 + milrinone (µg/kg/min) × 10 + vasopressin 
(U/kg/min) × 10,000. Severity of illness score was the 
Pediatric Risk of Mortality (PRISM) III at 12 h. Non-pul-
monary organ failures were defined using accepted defi-
nitions [25]. The designation of “immunocompromised” 
required presence of an immunocompromising diagnosis 
(oncologic, immunologic, rheumatologic, transplant) and 
active immunosuppressive therapy, or presence of a con-
genital immunodeficiency [26].

Outcomes
The objective of this study was to identify sub-pheno-
types of pediatric ARDS and assess the association of 
these subtypes with clinical variables, PICU mortality, 
and ventilator-free days (VFDs) at 28  days. Only inva-
sive ventilation was counted, with the first day as ARDS 
onset. Liberation from invasive ventilation for > 24  h 
defined ventilator duration. Patients requiring re-intuba-
tion > 24 h after extubation had additional days counted 
towards total ventilator days. VFDs were determined by 
subtracting total ventilator days from 28 in survivors. 
Patients with total ventilator days ≥ 28 days and all PICU 
non-survivors were assigned VFD = 0.

Statistical analysis
For sub-phenotype discovery, we analyzed gene expres-
sion using k-means clustering, restricting the analysis to 
31,136 annotated genes (as of July 2019). We chose an 
optimal number of clusters k using the gap statistic and 
95% confidence intervals (CI). First, we computed the 
gap statistic and 95% CI for k = 1–10, considering clus-
ters with overlapping confidence intervals as having simi-
lar performance (Additional file 1: Fig. 1). We then chose 
the maximal gap statistic with > 10 subjects per cluster 
(~ 10% of entire cohort). Clustering was performed solely 
based on gene expression, blinded to clinical character-
istics and outcomes. For pathway analysis of the identi-
fied sub-phenotypes, probes were filtered for expression 
values ≥ 10 in ≥ 10 samples and differentially expressed 
genes (DEGs) for each subtype determined using DESeq2 
[27] with BioMaRT [28]. Two-fold upregulated and 
downregulated DEGs were analyzed in Ingenuity Path-
way Analysis (IPA) [29] and ToppGene [30] to identify 
predicted upstream regulators, Gene Ontogeny terms, 
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and key pathways. Pathways with q value < 0.1 are pre-
sented in the Supplement.

Sub-phenotypes were assessed for association with 
clinical characteristics using non-parametric statistics. 
Categorical data were compared using Fisher exact test. 
We tested the association between sub-phenotypes and 
mortality and VFDs using logistic and competing risk 
regression [31], respectively, adjusting for (individually 
and together) immunocompromised status and PRISM 
III score. We reasoned that these two variables plausi-
bly contributed to both the identity of the sub-pheno-
types as well as outcomes, as they are associated with 
circulating immune cell gene expression and pulmonary 
and non-pulmonary severity of illness. Thus, immuno-
compromised status and PRISM III represent potential 
confounding of the association between subtypes and 
outcomes. Separately, we tested the association between 
sub-phenotypes and outcome adjusting for predicted 
mortality based on a recent pediatric ARDS-specific 
mortality prediction score [32]. Additionally, we repeated 
the above regressions while also adjusting for absolute 

neutrophil count (ANC) and absolute lymphocyte count 
(ALC) in order to assess whether associations between 
sub-phenotypes and outcomes were driven by lympho-
cyte subset proportions. Due to the limited number of 
deaths in the cohort, we restricted the number of con-
founders in all models to minimize bias and variance. 
Analyses were performed in Stata 14.2/SE (StataCorp, 
LP, College Station, TX) and R 3.0.1 (www.r-proje​ct.org). 
Heatmaps were generated with pheatmap and gridExtra 
in R.

Results
Between January 2018 and June 2019, 140 children had 
ARDS. We consented and enrolled 106 subjects (76%), 
of whom 96 had usable samples (excluded 8 for low RNA 
yield due to leukopenia, and 2 for poor quality RNA). Of 
these 96 subjects, 20 (21%) were non-survivors. Con-
sidering cluster gap statistic, 95% CI overlap and cluster 
size, k = 3 was chosen (Fig. 1). Sub-phenotypes were des-
ignated CHOP ARDS Transcriptomic Subtypes (CATS) 
1, 2, and 3, and did not differ in severity of illness, ARDS 
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Fig. 1  Three clusters identified using unsupervised k-means clustering, dubbed CHOP ARDS Transcriptomic Subtypes (CATS) 1 (red), 2 (green), and 
3 (blue). The individual subjects are plotted in a 2-dimensional plot, with the principle dimensions (Dim 1 and 2) which account for 29.3% and 5.8% 
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etiology, or ARDS severity at onset (Table  1). Sub-phe-
notypes differed by proportion of immunocompromised 
subjects, with CATS-1 (32%) and CATS-2 (48%) having 
more immunocompromised subjects, relative to CATS-3 
(14%; p = 0.011). CATS-1 had worse hypoxemia at 24 h, 
relative to the other subtypes.

To understand the biology of the sub-phenotypes, 
we analyzed the association between sub-phenotype 
and total leukocytes, ANC, and ALC (Additional file  1: 
Table  1). All leukocyte metrics were associated with 
CATS subtypes, with modest overall effect sizes (η2) 
between 5.4 and 11.2%. We performed analyses assess-
ing for upstream regulators, Gene Ontogeny terms, 
and key pathways (Fig.  2; Additional file  1: Figs.  2–7). 

CATS-1 was enriched for adaptive immune and T cell 
pathways. CATS-2 was enriched for complement path-
ways. CATS-3 showed upregulation of G-protein recep-
tor signaling and olfactory pathways. Regulator analysis 
demonstrated significant inflammatory cytokine regula-
tion of CATS-1 pathways.

In unadjusted analysis, CATS-3 had better survival 
and more VFDs than the other subtypes (Table 1, Fig. 3). 
After adjustment for PRISM III and immunocom-
promised status (Table  2), CATS-3 remained associ-
ated with lower mortality (OR 0.18, 95% CI 0.04–0.86) 
and higher probability of extubation (subdistribution 
HR 2.39, 95% CI 1.32–4.32). Adjustment for PRISM III 
strengthened this association, whereas adjustment for 

Table 1  Demographics stratified by CHOP ARDS Transcriptomic Subtypes (CATS)

ARDS acute respiratory distress syndrome, OI oxygenation index, PRISM III Pediatric Risk of Mortality III, VFDs ventilator-free days

Variables CATS-1 (n = 31) CATS-2 (n = 29) CATS-3 (n = 36) p value

Age (years) 6.8 [1.2, 13] 14.1 [6.9, 16.5] 7 [1.8, 12.8] 0.006

Female (%) 13 (42) 12 (42) 13 (36) 0.898

Severity of illness

 PRISM III at 12 h 9 [5, 15] 13 [8, 18] 12 [7, 21] 0.278

 Non-pulmonary organ failures 2 [1, 3] 1 [1, 2] 1 [1, 2] 0.530

 Vasopressor score 10 [4, 18] 5 [0, 12] 7 [0, 28] 0.313

Co-morbidities (%)

 Immunocompromised 10 (32) 14 (48) 5 (14) 0.011

 Stem cell transplant 4 (13) 8 (28) 2 (6) 0.040

Cause of ARDS (%)

 Direct 22 (71) 23 (79) 25 (69) 0.652

 Indirect 9 (29) 6 (21) 11 (31)

Cause of ARDS (%)

 Infectious 21 (68) 25 (86) 29 (81) 0.211

 Non-infectious 10 (32) 4 (14) 7 (19)

Cause of ARDS (%)

 Infectious pneumonia 16 (52) 19 (66) 21 (58)

 Non-pulmonary sepsis 5 (16) 6 (21) 8 (22)

 Aspiration pneumonia 4 (13) 3 (10) 3 (8) 0.606

 Trauma 1 (3) 1 (3) 1 (3)

 Other 5 (16) 0 3 (8)

ARDS onset

 PaO2/FIO2 152 [88, 243] 148 [121, 222] 138 [85, 187] 0.450

 OI 11.1 [6.7, 18.1] 11 [8.7, 13.4] 13.5 [9.6, 23.9] 0.371

24 h after onset

 PaO2/FIO2 179 [130, 240] 236 [182, 292] 252 [186, 323] 0.002

 OI 9.8 [6.2, 14.3] 5.7 [4.8, 8.1] 6 [4.3, 10.6] 0.004

Outcomes

 Ventilator days (all) 7 [5, 12] 10 [5, 24] 6 [4, 10] 0.152

 Ventilator days (survivors) 7 [6, 12] 9 [5, 16] 6 [4, 10] 0.201

 VFDs at 28 days 16 [0, 22] 16 [0, 21] 22 [12, 24] 0.012

 PICU mortality (%) 10 (32) 7 (24) 3 (8) 0.039
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Fig. 2  Heatmap of over- and under-expressed functional pathways and regulators using Gene Ontology (GO) and Ingenuity Pathway Analysis 
(IPA). The scale for A to D represents − log10(q value) for upregulated and log10(q value) for downregulated terms. Color scale represents activation/
inhibition score for E and F
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immunocompromised status attenuated it. Results were 
unchanged when also adjusting for ANC or ALC. We 
found similar results when we adjusted for the probability 
of death based on a published prediction model (Addi-
tional file  1: Table  2). The association of CATS-3 with 
better outcomes was not completely explained by fewer 
immunocompromised subjects in CATS-3, as an analysis 
restricted to immunocompetent subjects had point esti-
mates confirming the association with lower mortality 
and greater VFDs in CATS-3 (Additional file 1: Table 3), 
although not all analyses reached statistical significance 
with the reduced sample size.

Discussion
We identified three sub-phenotypes of pediatric ARDS 
with distinct biologic pathways and prognoses using 
whole blood transcriptomics within 24 h of ARDS onset. 
The sub-phenotypes demonstrated some overlap of tra-
ditional clinical characteristics of ARDS severity, with 
immunocompromised status, stem cell transplant, and 
severe hypoxemia seen at differing proportions across all 
subtypes. Transcriptomic sub-phenotypes may provide 
insight into molecular mechanisms underlying pediatric 
ARDS heterogeneity, particularly when combined with 
clinical characteristics.

ARDS heterogeneity has contributed to the pau-
city of therapies, and sub-classification into subtypes 
has been proposed as a way to address this. ARDS has 
been divided into direct or indirect [33–35], infectious 
or non-infectious [36, 37], focal versus non-focal [38], 
and on the basis of biomarkers [11, 33]. A recent trial 
attempted predictive enrichment by stratifying treat-
ment arm based on radiographic classification of focal 
or non-focal ARDS [39]. A limitation of this approach 
in this trial was the imprecision of the clinical designa-
tion of focal versus non-focal ARDS, with 21% of sub-
jects misclassified. Thus, while clinical variables such as 
risk factors and comorbidities can inform heterogene-
ity, these terms remain imprecise.

Biomarker- and transcriptomic-based sub-pheno-
typing may offer some advantages, including greater 
insight into pathophysiology. Re-analysis of adult 
ARDS trials have identified hyper- and hypo-inflam-
matory sub-phenotypes characterized, in part, by dif-
ferential levels of inflammatory biomarkers [11–13] 
and gene expression [40]. These findings in adults, 
and our results in pediatrics, demonstrate the utility 
of transcriptomics to uncover mechanisms underlying 
subtypes. Indeed, transcriptomics offer higher dimen-
sional analysis, relative to protein biomarkers, a fact 
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which potentially allows for better discrimination of 
sub-phenotypes.

We have previously demonstrated that infectious and 
non-infectious ARDS have different predictors of mor-
tality [37]. CATS sub-phenotypes did not stratify accord-
ing to either direct/indirect or infectious/non-infectious 
classifications. This may reflect the imprecision of clini-
cal subtyping, different underlying biology between clini-
cal characterization and peripheral gene expression, or 
low power. However, clinical characteristics may poten-
tially serve as one level of sub-classification which can be 

improved upon with the addition of transcriptomics. Full 
realization of this requires more rapid turnaround for 
biologic-based sub-phenotyping, as clinical categoriza-
tion is immediately applicable at bedside.

CATS sub-phenotypes revealed mechanisms which 
were not immediately apparent. CATS-1, for exam-
ple, was enriched in adaptive immunity, which could be 
related to its relatively higher ALC. CATS-1 also demon-
strated persistent hypoxemia, which is potentially related 
to signaling associated with adaptive immunity or to the 
types of organisms which may have caused the ARDS. 
CATS-2, which had nearly half of its subjects immuno-
compromised, was enriched in complement-related path-
ways, consistent with an emerging role for this pathway 
with stem cell transplant patients [41]. CATS-3 had sup-
pression of adaptive immune and T cell receptor path-
ways. The sub-phenotypes also demonstrated prognostic 
utility, with CATS-3 subjects demonstrating improved 
survival and VFDs in unadjusted and adjusted analyses.

There are few trials in pediatric ARDS, and manage-
ment is largely extrapolated from adults. The identifica-
tion of sub-phenotypes with divergent biology forms 
the premise for targeted treatment. Subtypes with dif-
ferential upregulation of innate and adaptive immunity 
offer intriguing opportunities for predictive enrichment 
in future trials of immunomodulatory therapies. Tran-
scriptomics also allows insight into the mechanisms 
underlying the broader condition of ARDS, as well as the 
pathophysiology underlying different subtypes. ARDS 
has long been considered a disease of predominantly 
neutrophil infiltration [42, 43]. However, leukocyte popu-
lations and pathways other than innate immune hyperin-
flammation contribute to ARDS pathogenesis, which can 
potentially be dissected via transcriptomics [44, 45].

Given the ARDS heterogeneity, transcriptomic differ-
ences between the CATS sub-phenotypes may simply 
reflect differences in underlying risk factors, limiting 
their utility for predictive enrichment. However, the 
molecular basis for the heterogeneity of risk factors is 
also poorly elucidated. Pathway enrichment of the CATS 
sub-phenotypes provides insights into the different 
immune pathways implicated in early ARDS. Whether 
this can assist with predictive enrichment remains to be 
demonstrated. However, given the differences in mortal-
ity rate, these sub-phenotypes may also have a role for 
prognostic enrichment.

We performed microarray rather than direct RNA 
sequencing (RNA-seq). While RNA-seq provides 
greater dynamic range and is superior at identifying low 
abundance transcripts, whole blood presents unique 
challenges. Up to 70% of the mRNA in a blood total 
RNA sample can be globin mRNA, with the remain-
ing total RNA composed of > 90% ribosomal RNA 

Table 2  Logistic regression and competing risk regression 
assessing association of  CHOP ARDS Transcriptomic 
Subtypes (CATS) clusters and PICU mortality or probability 
of  extubation by  day 28 (accounting for  the  competing 
risk of death)

ALC absolute lymphocyte count, ANC absolute neutrophil count, PRISM III 
Pediatric Risk of Mortality III
a  Odds ratio (OR) < 1: lower odds of mortality
b  Subdistribution hazard ratio (SHR) > 1: greater hazard for extubation alive (i.e., 
shorter duration of ventilation)

PICU mortality Probability 
of extubation

OR (95% CI)a p value SHR (95% CI)b p value

Unadjusted

 CATS-1 Ref – Ref –

 CATS-2 0.67 (0.21–2.08) 0.487 1.01 (0.54–1.91) 0.967

 CATS-3 0.19 (0.05–0.78) 0.021 2.15 (1.26–3.64) 0.005

Adjusted for PRISM III

 CATS-1 Ref – Ref –

 CATS-2 0.53 (0.16–1.76) 0.300 1.14 (0.60–2.17) 0.686

 CATS-3 0.13 (0.03–0.60) 0.009 2.83 (1.55–5.17) 0.001

Adjusted for immunocompromised

 CATS-1 Ref – Ref –

 CATS-2 0.44 (0.12–1.58) 0.207 1.20 (0.66–2.18) 0.557

 CATS-3 0.24 (0.06–1.07) 0.061 1.74 (1.02–3.00) 0.044

Adjusted 
for PRISM 
III + immuno-
compromised

 CATS-1 Ref – Ref –

 CATS-2 0.35 (0.09–1.36) 0.130 1.35 (0.74–2.44) 0.329

 CATS-3 0.18 (0.04–0.86) 0.031 2.39 (1.32–4.32) 0.004

Adjusted for PRISM + immunocompromised + ANC

 CATS-1 Ref – Ref –

 CATS-2 0.28 (0.07–1.14) 0.074 1.44 (0.78–2.67) 0.247

 CATS-3 0.11 (0.02–0.60) 0.011 2.77 (1.38–5.57) 0.004

Adjusted for PRISM + immunocompromised + ALC

 CATS-1 Ref – Ref –

 CATS-2 0.42 (0.10–1.67) 0.221 1.25 (0.69–2.27) 0.456

 CATS-3 0.19 (0.04–0.90) 0.036 2.37 (1.32–4.25) 0.004
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(rRNA). Neither globin mRNA nor rRNA sequences 
contribute high-value information, and unlike hybridi-
zation techniques, over-representation of non-inform-
ative sequences consume reagents and require greater 
sequencing depth to yield useful information. Globin- 
and rRNA-depletion techniques are available [46, 47]; 
however, depletion techniques reduce the amount of 
RNA (particularly from leukopenic subjects) and poten-
tially introduce artifact. Since microarrays are based on 
hybridization, over-abundance of globin or rRNA is less 
problematic, and so microarray was chosen for this study. 
Notably, every whole blood transcriptomic sub-pheno-
typing study to date has used microarray [15, 16, 48]. 
However, as RNA-seq technology improves and achieves 
better performance in whole blood, future transcriptomic 
studies may benefit from the improved coverage of direct 
sequencing technologies.

Our study has several strengths. We prospectively col-
lected blood ≤ 24 h of ARDS onset and generated expres-
sion profiles in > 90% of samples. Detailed clinical data 
was collected and correlated with sub-phenotypes. How-
ever, our study has important limitations. Subjects were 
recruited from a single center, which may limit generaliz-
ability. However, demographics and severity of ARDS are 
comparable to other published cohorts [6, 49–51]. We did 
not use the recent Pediatric Acute Lung Injury Consen-
sus Conference (PALICC) definition of pediatric ARDS 
[52], which allows unilateral infiltrates and has a specific 
SpO2-based severity stratification. Cohorts defined using 
PALICC may differ from ours in important ways which 
limit generalizability. Our sample size was small and only 
collected at ARDS onset, limiting our ability to fully char-
acterize the subtypes, assess their temporal stability, and 
detect associations with outcomes. Our small sample size 
and low mortality rate precluded adjustment for multi-
ple potential confounders. We sampled the blood, which 
while accessible, may not best reflect the transcriptome 
most relevant for ARDS. Alveolar sampling is uncom-
mon in pediatrics, and impractical for most clinical trial 
purposes. A future goal will be to reduce the number of 
transcripts required to discriminate between sub-phe-
notypes and operationalize a subtyping strategy. We did 
not include an external control population to assess up- 
or down-regulation of pathways, relative to a non-ARDS 
cohort. Most importantly, our study lacks a validation 
cohort to assess the robustness of the CATS sub-pheno-
types. This is the first transcriptomic study of pediatric 
ARDS, and validation cohorts with mRNA collection are 
lacking. Future studies of pediatric ARDS with transcrip-
tomics are needed to assess for reproducibility of the 
CATS sub-phenotypes. Development of a reduced gene 
signature would simplify this process, and is the focus 
of current work. Future cohorts should have parallel 

efforts correlating transcriptomics with plasma biomark-
ers, as a protein biomarker-based signature would likely 
prove faster, cheaper, and less labor-intensive. Biomark-
ers could also delineate mechanisms underlying the sub-
phenotypes, as well as facilitate comparisons with adult 
sub-phenotypes which have largely been defined using 
plasma proteins [11–13]. Re-analyses of adult ARDS tri-
als have suggested differential treatment response based 
on subtype. To reproduce this in children, future trials in 
pediatric ARDS should collect both plasma for proteins 
and whole blood mRNA for transcriptomics and test 
treatment response by sub-phenotypes, as differences 
between adult and pediatric ARDS do not necessarily 
allow for translation of adult trial data to children.

Conclusions
We identified three sub-phenotypes of pediatric ARDS 
using whole blood transcriptomics. The subtypes had 
differing clinical characteristics and divergent progno-
ses. Further studies should validate these findings and 
investigate mechanisms underlying differences between 
sub-phenotypes. Our results are the first steps towards 
reducing heterogeneity and designing trials of targeted, 
precision therapies in pediatric ARDS.
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