Xing et al. Critical Care (2020) 24:517
https://doi.org/10.1186/s13054-020-03247-0

Critical Care

RESEARCH LETTER Open Access

Hyperoxia provokes gut dysbiosis

Check for

° updates
IN rats

Zhouxiong Xing'", Yunhang Li*', Guoyue Liu?, Ying He', Yuanfa Tao® and Miao Chen"”

[ Keywords: Oxygen therapy, Hyperoxia, Gut microbiota, Gut dysbiosis J

Oxygen therapy is widely used in critically ill patients
and usually exposes patients to hyperoxia, resulting in
adverse clinical outcomes [1]. Many studies have ex-
plored the adverse effects of hyperoxia in the lung, heart,
and brain. Gut microbiota plays an important role in hu-
man health and disease [2]. However, the impact of
hyperoxia on gut microbiota remains unclear, and stud-
ies are limited and have yielded contradictory results [3,
4]. We attempted to explore the effect of hyperoxia on
gut microbiota by exposing rats to normobaric oxygen
for 7 days.

The experimental protocol was approved by the In-
stitutional Animal Care and Use Committee at Zunyi
Medical University. Male Sprague-Dawley rats (8
weeks of age, all the same strain) were obtained from
the Kavans Laboratory Animal Company (Changzhou,
China). All animals had free access to the same chow
and water and were maintained in the same
containers. The rats were pooled and randomly di-
vided into the control group (n =9) and oxygen
group (n =9). The oxygen group was exposed to 80%
normobaric oxygen for 7 days in a hyperoxia chamber
(Changjintech, Changsha, China). The control group
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was reared in another chamber with room air for 7
days. Fecal pellets were collected at days 0 and 7, and
DNA was extracted and prepared for 16S ribosomal
RNA V3-V4 region gene sequencing. Sequencing li-
braries were sequenced on an Illumina MiSeq plat-
form at Biomarker Technologies Company (Beijing,
China). Strain composition analysis and beta diversity
analysis were performed. We used linear discriminant
analysis (LDA) with effect size measurements for the
quantitative analysis of biomarkers within different
groups.

Figure 1 shows the relative bacterial abundance at the
phylum level and the beta diversity analysis between the
groups. At day 0, a principal coordinates analysis (PCA)
plot showed that the difference between the two groups
was not statistically significant, based on unweighted
UniFrac distances (R* =0.086, p = 0.055) (Fig. 1b). At
day 7, the PCA plot showed that the scatter points of
the two groups were discrete, and the difference between
the groups was statistically significant, based on un-
weighted UniFrac distances (R*> =0.185, p =0.001)
(Fig. 1d). It was demonstrated that 80% oxygen changed
the composition of the gut microbiome. Further LDA
analysis showed the enriched bacteria in the two groups
at day 7 (Fig. 2). Focusing on the pathogenic bacteria, we
found that Streptococcus was enriched in the oxygen
group, but Gammaproteobacteria and Proteus were
enriched in the control group.
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Fig. 1 Relative bacterial abundance at the phylum level and beta diversity. a Relative bacterial abundance of the control and the oxygen groups
(n =9) at the phylum level at day 0. b PCA plot of the control and the oxygen groups (n =9) at day 0 based on unweighted UniFrac distances
(R> =0.086, p =0.055). ¢ Relative bacterial abundance of the control and the oxygen groups (n = 9) at the phylum level at day 7. d PCA plot of
the control and the oxygen groups (n =9) at day 7 based on unweighted UniFrac distances (R> =0.185, p =0.001**). PCA, principal coordinates
analysis. **p < 0.01. The corresponding phyla of the pathogenic bacteria in this study: Proteobacteria (Gammaproteobacteria and Proteus) and
Firmicutes (Streptococcus)
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To date, a great amount of work has been carried
out in hyperoxia-related organ damage, basically and
clinically. However, very few studies have explored
the impact of hyperoxia on intestinal microbiota [5].
A previous study has indicated that hyperbaric hyper-
oxia alters the composition of the gut microbiota in
mice, and one lineage, Anaerostipes, an obligately an-
aerobic Firmicute, diminishes after hyperbaric hyper-
oxia [3]. However, a recent study has suggested that
normobaric  hyperoxia cannot change the gut

microbiota in rat pups [4]. However, this study was
limited by its small sample size (n =4). In our study,
we found gut dysbiosis induced by normobaric hyper-
oxia in an adult rodent model. Our model consisted
of a larger sample size. Compared to hyperbaric oxy-
gen therapy, normobaric oxygen therapy can expose
patients to oxygen for a longer time and is far more
widely used in various settings [6]. It is important to
know how normobaric hyperoxia influences the gut
microbiota. In our study, we also found that
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Fig. 2 LDA along with effect size measurements was applied to the
enriched bacteria from the genus level to the phylum level in the
control and oxygen groups at day 7 (n =9). LDA, linear
discriminant analysis

hyperoxia influences some pathogenic bacteria,
enriching Streptococcus and diminishing Gammapro-
teobacteria and Proteus. A possible reason for this dif-
ferent behavior is that hyperoxia has specific selective
effects in different bacteria.

In conclusion, hyperoxia provokes gut dysbiosis in
rats, in a complex manner.
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