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Abstract

associated with COVID-19.

COVID-19 is an emerging disease that can manifest itself as asymptomatic or mild respiratory tract infection in the
majority of individuals, but in some, it can progress into severe pneumonia and acute respiratory distress syndrome
(ARDS). Inflammation is known to play a crucial role in the pathogenesis of severe infections and ARDS and
evidence is emerging that the IL-1/IL-6 pathway is highly upregulated in patients with severe disease. These
findings open new avenues for host-directed therapies in patients with symptomatic SARS-CoV-2 infection and
might in addition to antiviral treatment be enough to curb the currently unacceptably high morbidity and mortality

Introduction

Although the majority of patients with COVID-19 are
asymptomatic or have mild SARS-CoV-2 infections,
many patients have been hospitalized and admitted to
intensive cares (ICUs) and mortality is significant.
Understanding this outbreak, including the effectiveness
of supportive, immune-modulatory, and antiviral treat-
ments, is essential. An important aspect of severe
COVID-19 is a hyperinflammatory status, and immuno-
modulatory therapy might therefore be an important as-
pect in the treatment of COVID-19. Although ICU
patients have been treated with glucocorticoids, some
experts have even argued, based on studies in Middle-
Eastern respiratory syndrome coronavirus (MERS-CoV),
severe acute respiratory syndrome (SARS), influenza,
and respiratory syncytial virus (RSV), that they are likely
to do more harm than good [1, 2]. However, a more re-
cent study showed that early short-course corticoste-
roids during admission were associated with fewer ICU
admissions [3], and a yet to be published study on
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dexamethasone argues that it can save lives especially in
mechanically ventilated patients. Other immune modu-
latory treatments of interest include blocking the IL-1 or
IL-6 pathway, the use of interferon-f, and many others.
There are currently only small observational trials that
contribute to the evidence for the benefit or harm of
these interventions in COVID-19. In addition to the lack
of available treatments known to be effective, insight
into the pathophysiology of this coronavirus needs to be
urgently addressed. This is essential in the pathway to-
wards developing new, or repurposing existing, therapies
that can be used in the treatment of patients with SARS-
CoV-2.

Mechanism of disease

The novel coronavirus SARS-CoV-2 is highly likely to
have similarities to other coronaviruses such as SARS-
CoV, with which it has the strongest sequencing similar-
ities, and other severe respiratory virus infections such as
influenza. The most severely ill patients infected with
SARS-CoV or influenza seem to develop an immune
phenotype that can be described as an inflammasome-
mediated hyperinflammatory status, causing respiratory
failure and secondary infections [4—9]. Autopsy in young,
previously healthy, patients that died during the HIN1
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influenza 2009 pandemic revealed evidence of “cytophago-
cytosis” in the lung [10]. This phenomenon is a hallmark
of macrophage activation syndrome (MAS), or named sec-
ondary HLH (sHLH) [11, 12]. Lethal complications of in-
fluenza are consistent with inflammasome-mediated
disease with signs of MAS [11, 13-15]. Inflammasomes
are protein complexes that activate caspase-1 protease
that in turn processes proinflammatory cytokines from
the IL-1 family (e.g., IL-1p, IL-18) into active cytokines. A
whole-exome study performed in fatal cases of HIN1 with
signs of MAS found a high percentage of mutations in
genes that are linked to genetic causes of diseases similar
to MAS/HLH, suggesting that the genetic background of
the patient predisposes to developing MAS in influenza
[16]. Underscoring the importance of the inflammasome/
IL-1 pathway in MAS is the observation that a monogen-
etic mutation in the inflammasome underlies primary
MAS [17].

In the case series of critically ill patients with SARS
from Toronto and Singapore, ARDS and multiple organ
failure were frequently observed [8, 18]. ARDS was
thought to be due to an exacerbated innate host re-
sponse to SARS-CoV [19, 20]. Similar pulmonary hyper-
inflammation was seen on the histology in MERS
patients [21]. Lung histology in COVID-19 shares simi-
larities to SARS, MERS, and influenza [22]. Another
study revealed high IL-18-circulating concentrations
[23], a cytokine that is associated with MAS [24], and
MAS has also been reported in SARS [25]. In SARS-
CoV-2 infection, elevated IL6 and ferritin concentrations
have also been described [26]. In other studies with
SARS-CoV-2 pneumonia, patients that needed ICU ad-
mission more often had leukocytosis, higher neutrophil
counts, lower lymphocyte counts, elevated D-dimer, and
highly elevated LDH, and the main reason patients were
admitted to the ICU was ARDS [27-29].

However, currently, it becomes clear that only a mi-
nority of patients with COVID-19 develop MAS/HLH.
Many other patients show signs of a cytokine storm syn-
drome, but do not fulfill the criteria of MAS/HLH. We
and others have identified an IL-1/IL-6-driven innate
immune response [30-36]. Interestingly, TNF concen-
trations in plasma were not significantly elevated in the
early stages of disease in critically ill patients compared
to patients admitted to the ward: median 24.0 pg/ml
[IQR 16.5-33.5] and 21.5pg/ml [IQR 16.0-33.5], re-
spectively [30]. This might explain that hemodynamic
instability is not a classical presentation of COVID-19,
since both TNF and IL-1 as cytokines are needed to
cause hemodynamic problems [37], arguing that the
hyperinflammatory innate immune response initially is
mainly an overactive IL-1/IL-6 response. Also, the clas-
sical coagulopathy associated with COVID-19 is different
by not fulfilling the criteria of classical diffuse
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intravascular coagulopathy (DIC), despite D-dimers be-
ing profoundly elevated in many critically ill patients
[38]. This all points to a unique underlying pathophysi-
ology in COVID-19 that might be partially explained by
the local ACE2 deficiency in the lung and subsequent
effects on the kallikrein-kinin system [39]. Next to in-
flammation and coagulopathy, COVID-19 has a clear
vascular component with an “endothelitis” that has been
observed in the lungs of patients that died [22, 40].
These are unique features of the disease, underscoring
that SARS-CoV-2 can infect and inflame endothelial
cells and make blood vessels leak.

Targeting IL-1 in COVID-19

Clinical and laboratory features of MAS include sus-
tained fever, hyperferritinemia, and high IL-18 concen-
tration in circulation, pancytopenia, fibrinolytic
consumptive coagulopathy, and liver dysfunction [11, 12,
24]. Controlling this excessive immune activation and
organ damage can be achieved in various ways. With
MAS in the context of other triggers, the focus of treat-
ment is on interrupting the cytokine storm, because cy-
tokines such as IL-1 maintain the persistent drive of
inflammasome activation (Fig. 1). IL-1 can induce pro-
duction and release of more IL-1, a process described as
an autoinflammatory loop (Fig. 1). Breaking this loop
can be done by corticosteroids or chemotherapy and has
been suggested for H5N1 infection [41]. However, these
treatment strategies will also impair host defense against
bacteria and fungi and will make patients prone to sec-
ondary infections that are a major cause of death of
complicated viral pneumonitis [4, 6]. One of the safest
ways to stop this overwhelming innate immune response
can be accomplished by using IL-1 receptor (IL-1R)
blockade or drugs that target IL-1 signaling [42, 43].
This approach, especially for the treatment of secondary
MAS without underlying cancer, has recently been re-
ported [44]. Anakinra is a bio-engineered form of the
naturally occurring interleukin-1 receptor antagonist
(IL-1ra) that blocks the action of interleukin-1 (Fig. 1). It
is routinely used in patients with autoimmune and in-
flammatory disorders and MAS [44]. Anakinra has been
used in several studies for sepsis and septic shock. Stud-
ies that recruited in total almost 2000 patients demon-
strated that although anakinra did not reduce the overall
all-cause mortality, survival was increased in the sub-
group of sepsis patients with features of MAS (ferritin
elevations in excess of 2000 ng/ml, coagulopathy, and
liver enzyme elevations) [45-48]. Its safety profile and
wide therapeutic margin on the one hand, and the cen-
tral role of IL-1 in the cytokine storm of MAS on the
other hand, warrants assessing anakinra as a potential
therapeutic in severe coronavirus infection [49]. In
tracking the effectiveness of the treatment, ferritin and
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Fig. 1 Rationale for use of anakinra in severe coronavirus. The SARS-Cov-2 will cause epithelial damage leading to the release of IL-1a that will (1) recruit
neutrophils and monocytes to the site of infection and (2) induce IL-1(3 in monocyte/macrophages. Moreover, the 2019 nCov will induce pro-IL-13 in
monocyte/macrophages which in turn will induce more IL-1 that will recruit and activate more innate immune cells. This autoinflammatory loop where IL-1 (IL-
Ta and IL-163) can induce production and release of more IL-1 has to be tightly regulated because an ongoing loop will activate and recruit more innate
immune cells independent of the initial trigger. Anakinra blocks the IL-1 receptor (IL-1R) and thus will prevent autoinflammation by blocking effects of IL-1a
released from dead epithelial cells, as well as IL-1(3 produced by immune cells. IL-1-induced IL-6 will also be blocked. The autoinflammatory loop can exacerbate
from increase innate immune response into uncontrolled MAS a spectrum that associates with increasing ferritin levels

rophils
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IL-18 circulating concentrations are accepted bio-
markers. Ferritin is an established laboratory test that is
available in almost all hospitals in the Western world
and can thus provide a simple and rationale biomarker
for the development and resolution of MAS and can be
used to follow the effect of anakinra on MAS-like in-
flammation in COVID-19.

Treat with anakinra, do not wait for full-blown sHLH

It has recently been suggested to be aware of MAS and
use a Hscore to calculate and consider immunosuppres-
sive treatment such as corticosteroids, anakinra, toci-
lizumab, or JAKinibs [50]. A recent study showed that
treating patients with COVID-19 that fulfilled these cri-
teria with anakinra showed a beneficial response com-
pared to historical outcomes [51]. However, three
patients out of 8 died in spite of treatment, and patients
who full-fill these criteria are likely to be so severely ill
that any single intervention has a very marginal chance
to drastically improve the outcome. In addition, a case
series of 3 patients with leukemia were treated with ana-
kinra based on extreme ferritin levels and hyperinflam-
matory status with beneficial clinical effects [52], and a
case series of 5 patients with severe COVID-19 also
showed a response to anakinra [53]. We propose to use
immunomodulatory therapy with anakinra in an earlier
phase then after admission on the ICU. First, the start of

early treatment will prevent sHLH instead of treating it,
which gives a better chance to the patient to survive this
very severe complication. Second, anakinra has only mild
immunosuppressive effects since it does not decrease
the capacity to clear bacterial or fungal infections, and
there are even data to support the assumption that
blocking IL-1 might increase certain components of dys-
regulated host defense [54, 55]. Moreover, in contrast to
JAKinibs, anakinra will not directly block the IFN-
STAT1/STAT?2 pathway critical for host defense against
viral infections. Third, in contrast to tocilizumab (an IL-
6 inhibitor), it targets and inhibits the core mechanism
in the pathogenesis of MAS, namely the hyperactive
inflammasome loop (Fig. 1). In addition, anakinra will
decrease IL-6 production since IL-1 is a potent inducer
of IL-6, and thus, the suggested beneficial effects of toci-
lizumab are likely to be seen also in anakinra. Anakinra
will not only block IL-1B but also IL-la which is re-
leased due to epithelial and endothelial damage and, in
this way, targets the tissue-driven inflammatory re-
sponse. Finally, the safety profile of anakinra is very good
and the short half-life makes it possible to stop fast once
undesired effects are seen such as neutropenia, which is
not possible with tocilizumab. These arguments have led
to the selection of anakinra as an immunomodulatory
treatment option in several ongoing trials. A recent and
larger study supports the use of anakinra in COVID-19
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patients in the early phase and reports that high dose
intravenous anakinra started in patients outside of the
ICU was safe and resulted in clinical benefit in 72% of
patients [56]. Another recent COVID-19 study included
52 consecutive patients for anakinra treatment and 44
historical patients. Admission to the ICU for invasive
mechanical ventilation or death occurred in 13 (25%) pa-
tients in the anakinra group and 32 (73%) patients in the
historical group and the treatment effect of anakinra
remained significant in the multivariate analysis [57].

Conclusions

Treating patients that are critically ill during a pandemic
with a novel pathogen is a major challenge. As long as
we do not have a vaccine or effective antiviral drugs, we
need other strategies to help patients with COVID-19.
One strategy that is urgently needed is to prevent disease
progression from symptomatic to ICU. In the ICU,
COVID-19 has many features including thromboembolic
events, fibrosis, and “endothelitis,” conditions that are all
difficult to treat. We propose that targeting the innate
inflammatory response with anakinra in combination
with supportive care and the best antiviral available
could result in a drastic decrease of ICU admissions.
One pitfall to date could be that using anakinra only in
sHLH as proposed [50] might fail to help patients be-
cause sHLH is already associated with a high mortality
despite treatment. We propose that when a clinician
considers to dampen hyperinflammation with anakinra,
this should be done on the ward or at entry of ICU due
to several strong arguments: its safety profile and clinical
experience in sepsis, the rationale to prevent full-blown
sHLH, and the possibility to stop the drug without hav-
ing undesirable long-term effects of anakinra.
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