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Abstract

Background: Dysregulation of the host immune response is a pathognomonic feature of sepsis. Abnormal
physiological conditions are understood to shift efficient linear splicing of protein-coding RNA towards non-
canonical splicing, characterized by the accumulation of non-coding circularized (circ)RNA. CircRNAs remain
unexplored in specific peripheral blood mononuclear cells (PBMCs) during sepsis. We here sought to identify and
characterize circRNA expression in specific PBMCs of patients with sepsis due to community-acquired pneumonia
(CAP) relative to healthy subjects.

Methods: The study comprised a discovery cohort of six critically ill patients diagnosed with sepsis due to
community-acquired pneumonia and four (age, gender matched) healthy subjects. PBMCs were isolated, and
fluorescence-activated cell sorting was used to purify CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B
cells for RNA sequencing. CD14+ monocytes from independent six healthy volunteers were purified, and total
RNA was treated with or without RNase R.

Results: RNA sequencing of sorted CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B cells from CAP
patients and healthy subjects identified various circRNAs with predominantly cell-specific expression patterns.
CircRNAs were expressed to a larger extent in monocytes than in CD4+, CD8+ T cells, or B cells. Cells from
CAP patients produced significantly higher levels of circRNA as compared to healthy subjects. Considering
adjusted p values, circVCAN (chr5:83519349-83522309) and circCHD2 (chr15:93000512-93014909) levels in
monocytes were significantly altered in sepsis. Functional inference per cell-type uncovered pathways mainly
attuned to cell proliferation and cytokine production. In addition, our data does not support a role for these
circRNAs in microRNA sequestration. Quantitative PCR analysis in purified monocytes from an independent
group of healthy volunteers confirmed the existence of circVCAN and circCHD2.
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warranted.

Conclusions: We provide a benchmark map of circRNA expression dynamics in specific immune cell subsets
of sepsis patients secondary to CAP. CircRNAs were more abundant in immune cells of sepsis patients relative
to healthy subjects. Further studies evaluating circRNA expression in larger cohorts of sepsis patients are
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Background
Sepsis is a complex syndrome initiated by an imbal-
anced reaction to infection, with community-acquired
pneumonia (CAP) as a major cause, leading to organ
damage and high mortality rates [1, 2]. Despite ad-
vances in critical care medicine and antimicrobial
therapy, no drug specifically targeting sepsis has been
approved [3]. The immunopathology of sepsis is
understood to encompass a plethora of host defense
reactions that are primarily categorized as either
abnormally excessive or suppressed [4]. Excessive in-
flammation (or hyperinflammation) exacerbates organ
dysfunction whereas immune suppression induces im-
mune cells to become perpetually unresponsive to
pathogens, thereby increasing the risk of mortality
due to, for example, uncontrolled secondary infections
and failure to restore homeostasis [5]. Prospective ob-
servational cohorts to study the genomics of sepsis
have shown that patients present signatures of both
sustained inflammation and immune suppression [6—
8]. Identifying regulatory features of the genomic re-
sponse in sepsis is crucial for future drug discovery.
Advances in next-generation sequencing and bioinfor-
matics have aided in the identification of a novel type of
RNA class that is naturally resistant to degradation by
exonucleases, termed circular (circ)RNA [9]. CircRNAs
are single-stranded RNA molecules formed by non-
canonical pre-messenger (m) RNA splicing, where
downstream donor sites are “back-spliced” to upstream
acceptor sites (e.g., the end of exon 4 covalently binds to
the start of exon 4) [10]. In general, the abundance of
circRNA is low when compared to the associated linear
mRNA [11-13], suggesting that the formation of cir-
cRNA may be inefficient for cellular physiology [14].
While the functions of circRNA remain largely un-
known, proposed roles include sequestration of micro-
RNA, protein binding, and interference in transcript
splicing [15]. The patterns of circRNA expression in per-
ipheral blood mononuclear cells (PBMCs) of critically ill
patients with sepsis remain unexplored. Here, we sought
to characterize the circRNAome in specific PBMCs of
sepsis patients secondary to CAP relative to healthy sub-
jects. Our findings provide a benchmark in understand-
ing the role of circRNA in the genomic response during
sepsis secondary to CAP.

Methods

Study population

The study comprised a discovery cohort of six critically
ill patients with sepsis due to community-acquired pneu-
monia (CAP) with positive blood cultures for Streptococ-
cus pneumoniae (S. pneu) selected from within the
framework of the Molecular diAgnosis and Risk stratifi-
cation in Sepsis (MARS) project (ClinicalTrials.gov iden-
tifier NCT01905033) [16, 17]. Sepsis diagnosis was
described in detail previously [16, 18]. This cohort was
enrolled between January 2011 and July 2012. The Med-
ical Ethics committees approved an opt-out consent
method (IRB no. 10-056C). Severity was assessed by
Acute Physiology and Chronic Health Evaluation (APAC
HE) IV [19] and total Sequential Organ Failure Assess-
ment (SOFA) scores excluding the central nervous sys-
tem component [20]. Shock was qualified by the use of
vasopressors (norepinephrine, epinephrine, or dopa-
mine) for hypotension in a norepinephrine-equivalent
dose of more than 0.1 pg/kg/min [2]. Four healthy sub-
jects (age and gender matched) were also included in the
discovery cohort. A total of six independent healthy vol-
unteers (> 18 years old) were also included for in vitro
validation assays. From all healthy subjects, written in-
formed consent was obtained.

Peripheral blood mononuclear cell isolation

Heparinized whole blood (10ml) was collected from
healthy subjects and sepsis patients. Blood from sepsis pa-
tients was collected within 24 h of ICU admission and di-
luted 1:1 with phosphate-buffered saline (PBS) (Fresenius
Kabi). PBMCs were separated by centrifugation using
Ficoll-Paque PLUS (GE Healthcare Life science, Little
Chalfont, UK) followed by treatment with ice-cold
erythrocyte lysis buffer (Qiagen, Venlo, The Netherlands)
and washed twice with ice-cold PBS supplemented with
0.5% sterile endotoxin-free bovine serum albumin (BSA;
Divbio Science Europe, AK8917-0100). PBMCs were
stained with cluster of differentiation (CD)14-APC-Cy7,
CD3-AlexaFluor700, CD4-PERCP-Cy5.5, CDI15-FITC,
CD20-PE-CF594 (BD Biosciences), and CD8-APC
(eBioscience, San Diego, CA) for 30 min at 4 °C. Within a
lymphocyte gate based on forward and side scatter, CD4
T cells were defined as CD3*CD4"CD8~, CD8 T cells as
CD3*CD8'CD47, and B cells as CD3°CD19". In the
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monocyte gate, monocytes were identified as
CD14'CD15" cells. Data acquisition was performed using
a FACSCanto II flow cytometer (BD Biosciences). After
sorting, cells were kept in RNAprotect Cell reagent (Qia-
gen, Venlo, The Netherlands #76526). Monocytes were
also captured from six healthy subjects enrolled for
in vitro validation assays. Healthy PBMCs were purified
from heparinized whole blood using Ficoll-Paque as de-
scribed above, and monocytes were purified with magnetic
beads coated with anti-CD14 antibody respectively (Milte-
nyi Biotech). Monocyte purity was verified by flow cytom-
etry (> 95% CD14*CD15" cells). Flow cytometry data were
analyzed with Flowjo X.07 (Tree Star, Ashland, OR).

RNA sequencing

Total RNA was isolated from each cell type by means of
the miRNeasy RNA isolation kit (Qiagen, Venlo, The
Netherlands) according to the manufacturer’s instructions.
RNA quality was assessed by bioanalysis (Agilent), with all
samples having RNA integrity numbers (RINs) > 7. Total
RNA concentrations were determined by Qubit® 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA). Se-
quencing libraries were prepared by means of the Ova-
tion® RNA-Seq System V2 (NuGEN) kit as per the
manufacturer’s instructions. Libraries were sequenced
using the Illumina HiSeq2500 (Illumina) to generate 2 x
126 bp paired-end (PE) reads. Sequence read quality was
assessed by means of the FastQC methods (version 0.11.5;
Babraham Institute, Babraham, Cambridgeshire, UK).
Trimmomatic version 0.32 [21] was used to trim the Illu-
mina adapters containing poor-quality bases and ambigu-
ous nucleotide containing sequences. Low-quality leading
(3 nucleotides) and trailing (3 nucleotides) bases were re-
moved from each read, and the quality of the body of the
reads was assessed with a sliding window trimming using
a window of 4 and a phred score threshold of 15 nucleo-
tides. After pre-processing, the remaining high-quality
reads were used to align against the Genome Reference
Consortium Human Genome Build 38 patch release 7
(GRCh38.p7) [22]. Mapping was performed by Tophat2
version 2.1.1 [23] with parameters as default. Count data
were generated by means of the featureCounts method
[24] and analyzed using the DESeq2 method [25] in the R
statistical computing environment (R Core Team 2014. R:
A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria).
Significance was defined by Benjamini-Hochberg (BH) ad-
justed p value <0.05 and fold change > 1.5 or < — 1.5. The
bioinformatics workflow is represented in Additional file 1:
Fig. S1.

Circular RNA bioinformatics
Sequence reads were analyzed by Mapsplice2 [26] with
the following parameters: --fusion-non-canonical, --min-
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fusion-distance 200, and --min-map-len 25. The short
read aligner Bowtie [27] was used to align the reads to
the reference genome (GRCh38.p7). A circRNA was
called if it was supported by at least four back-spliced
reads in at least two different samples. To perform re-
verse complementary sequence (RCS) analysis, we
aligned the downstream and reversed complement of
the upstream intron using the pairwiseAlignment func-
tion implemented in the Biostrings R package [28]. The
identified significant [29] RCSs were then blasted using
the RepeatMasker program [30] to screen sequences for
interspersed repeats and low complexity DNA se-
quences. The flanking intron sequences of all circRNAs
were obtained from the GENCODEv25.p7 human gen-
ome reference. The RNA-hybrid tool [31] was used to
predict putative micro (mi) RNA target sites in circRNA.
To determine the relative expression of circRNA with
respect to the host linear RNA, we used the back-
splice-to-linear ratio as described previously [32],
modified by taking the average of read counts for all
samples (S1...Sn).

Back - splice - to - linear ratiogene)
B Average(c(s1...sn))
Max (Average (ll (S1...n) ) , Average (12(51_..5n)) )

where c¢ is total read count of circRNA back-splice junc-
tion and /1 and /2 represent the total linear read count
that spans left and right linear-spliced junctions of the
same exon(s), respectively.

For miRNA enrichment analysis, a cumulative distri-
bution function (CDF) was computed using the ecdf
function of the R Bioconductor package, Stats. The Uni-
versity of California Santa Cruz (UCSC) table browser
[33] and data integrator tool along with custom tracks
were used to obtain the coordinates and exon sequences.
miRbase (release 22) was used to get the human mature
miRNA sequences. Pathway analysis of the circRNA host
genes was done by gene ontology (GO) enrichment ana-
lysis [34] and Ingenuity pathway analysis (IPA; Qiagen
bioinformatics). Human species and IPA gene knowl-
edgebase were selected. All other settings were default.
BH multiple-test adjusted p values <0.05 defined
significance.

Validation assay

CD14+ monocytes purified from six healthy volunteers
were seeded at 0.5 x 10° cells per well with Roswell Park
Memorial Institute (RPMI) medium supplemented with
10% sterile fetal calf serum (FCS; HyClone, #SV30160.03),
200 mM glutamax (Thermo Fisher, #35050-038), 100 uM
pyruvate (Thermo Fisher, #11360-039), and 50 pg/ml gen-
tamycin (Lonza, #17-5192) in a cell-repellent surface 48-
well plate (Greiner Bio-one, #677970). Total RNA was
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isolated from purified monocytes using the RNeasy Mini
Kit (Qiagen, #74104) according to the manufacturer’s in-
structions. RNA quality and concentration were assessed
using Nanodrop (Thermo Fisher). To generate RNase R
digested RNA [35], 150 ng total RNA was incubated in 1x
RNase R buffer in a 20-pl reaction with or without 5 units
of RNAse R (Epicentre) at 37 °C for 10 min followed by
heat inactivation at 95°C for 3 min. DNA was depleted
using DNase I (Invitrogen, #79254). Complementary DNA
(cDNA) was synthesized with random primers using the
SuperScript III reverse transcriptase (RT) kit (Invitrogen;
#11752250) as per the manufacturer’s instructions. Diver-
gent primers were designed for the versican (VCAN;
chromosome (chr)5: 83519349-83522309) and chromodo-
main helicase DNA binding protein 2 (CHD2; chrl5:
93000512-93014909) loci (Additional file 2: Fig. S2). The
sequences of VCAN circRNA primers were 5'-GCCC
CCAGCAAGCACAAAATTT-3’ (forward) and 5'-TGCA
GTTTCTGCGAGGATACTC-3’ (reverse). The sequences
of the CHD2 circRNA primers were 5'-TCACCCCAAC
AAGAGACACTTC-3" (forward) and 5'-TCTTTCAGCC
TGGGCACTTTGT-3" (reverse). The hypoxanthine phos-
phoribosyltransferase (HPRT) gene was used as linear
messenger (m) RNA control. The sequences of the HPRT
primers were 5'-GGATTTGAAATTCCAGACAAGTTT-
3’ (forward) and 5'-GCGATGTCAATAGGACTCCAG-
3’ (reverse). Quantitative reverse-transcriptase polymerase
chain reaction (qQRT-PCR) was performed by using the
SensiFAST SYBR No-ROX Mix (Bioline, #CSA-01190)
and a LightCycler480 system II (Roche) using the follow-
ing program: 95 °C pre-incubation for 6 min followed by
40 cycles of 95°C (10s), 62°C (20's), and 72°C (205s). RT-
PCR products were separated by agarose gel (2%, Roche
#11388991001) electrophoresis, and bands were visualized
by Syngene Gbox scanner. Data were quantified and ana-
lyzed by means of the LinRegPCR method [36]. CircRNA
expression indices of treated samples were normalized to
corresponding linear HPRT1 expression in untreated
samples.

Monocyte stimulation

In order to evaluate the inducibility of circRNA, mono-
cytes from healthy participants were stimulated with
lipopolysaccharide (LPS; EB Ultrapure Invivogen #tlrl-
3pelps), heat-killed Streptococcus (S.) pneumoniae (Sp;
ATCC6303), and Klebsiella (K.) pneumoniae (Kp;
ATCC43816) at 37 °C with 5% CO, and 95% humidity
for 2 and 24 h. Heat-killed bacteria (70 °C for 30 min)
were used at a bacteria-to-cell ratio of 10:1. Supernatants
were collected for enzyme-linked immunosorbent assays
(ELISAs). Tumor necrosis factor alpha (TNF) and inter-
leukin (IL)-6 levels were measured using commercially
available ELISA kits (TNF, R&D systems #MAB610; IL-
6, Thermo Fisher #88710677). Bradford protein assay
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(BIO-RAD, Hercules, CA) was used for total protein
measurements. Cells were resuspended in RNAprotect
Cell reagent (Qiagen, Venlo, The Netherlands #76526)
and stored at — 80 °C prior to qRT-PCR analysis.

Statistics

The length of exons involved in circRNAs, introns flank-
ing the expressed circRNAs, and the control set were
compared using an unpaired Student ¢ test. The paired
Student ¢ test was used to compare the circRNA expres-
sion with its linear counterpart. Quantitative RT-PCR
data was analyzed by Wilcoxon rank-sum test. Unless
otherwise stated, p <0.05 demarcated significance. Heat
maps were generated using the pheatmap R method, and
principal component analysis (PCA) was done using the
FactoMinerR R package. Venn diagrams were made
using the VennDiagram R package.

Results

Circular RNA detection and characterization in CAP and
health

RNA-sequencing data of monocytes, CD4", CD8" T cells,
and B cells isolated from healthy subjects (median age
[Q1-Q3], 54 [50-60]; males [%], 2 [50]) and CAP patients
were used to map circRNA (Fig. 1la). The CAP patients
consisted of elderly adults (median age [Q1-Q3], 62 [50—
68]; males [%], 1 [17]) with median APACHE IV score of
52 (Q1-Q3, 47-74), median SOFA score of 6 (Q1-Q3, 5—
8), 50% having shock, and 67% on mechanical ventilation.
In total, 734, 753, 636, and 430 circRNAs were identified
in monocytes, CD4+, CD8+ T cells, and B cells, respect-
ively (Additional file 3: Table S1). PCA of circRNA expres-
sion revealed clearly distinct clusters per cell type with
explainable variance of 12.8% (PC1l) and 8.7% (PC2)
(Fig. 1b). On average, circRNAs were expressed to a sig-
nificantly lower extent than the corresponding host gene
expression (Fig. 1c). Monocytes produced more circRNA
than CD4+, CD8+ T cells, or B cells, with back-splice-to-
linear ratios (a measure of circRNA expression relative to
linear mRNA counterpart) equating to 0.13 (Q1-Q3,
0.05-0.39), 0.06 (Q1-Q3, 0.05-0.26), 0.07 (Q1-Q3, 0.06—
0.29), and 0.05 (Q1-Q3, 0.02—0.06), respectively. The gene
encoding nucleolin (NCL) produced the most circRNA
species (total of 13), polyhomeotic homolog 3 (PHC3)
produced 12 circRNAs, and RNA binding motif protein
25 (RBM25) produced 11 circRNAs (Fig. 1d). The longest
predicted circRNA encompassed 44 exons of the centro-
somal protein 192 (CEP192) gene (chrl8: 12999421-
13117643) (Fig. le). Of note, while the average length of
circRNA exons was not longer than the genome-wide
average (Fig. 1f), flanking introns were significantly longer
(Fig. 1g). Furthermore, the flanking introns of the pre-
dicted circRNAs were significantly enriched for RCSs,
containing interspersed  Arthrobacter luteus (Alu)
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Fig. 1 Detection and characterization of circRNA in monocytes (CD14), CD4, CD8 T cells, and B cells (CD19) of CAP patients and healthy subjects.
a Schematic illustration of linear RNA splicing and the back-spliced junction-read leading to the identity of exonic circRNA. Alu, Arthrobacter luteus
restriction endonuclease repeats. b Principal component analysis (PCA) plot of all detected circRNAs for monocytes, CD4, CD8 T cells, and B cells
(CD19). ¢ Linear RNA and circRNA expression indices for each peripheral mononuclear cell type. d Number of detected circRNAs per gene in
monocytes, CD4+, CD8+ T cells, and B cells. @ Number of circRNAs that contained different number of exons derived from parental genes in
monocytes, CD4, CD8 T cells, and B cells. f Box plot showing log2-transformed (log2) exon length of back-spliced exons in each cell type relative
to the genome-wide exon length. g Box plot depicting log2-transformed intron lengths of introns flanking circRNA back-spliced exons for
monocytes (CD14), CD4, CD8 T cells, and B cells (CD19) and genome-wide lengths. h Barplot showing the percentage of repetitive elements in
introns flanking circRNAs of each cell type. Alu, Arthrobacter luteus restriction endonuclease repeats
.

restriction endonuclease repeats (55%) and simple repeats
(1.3%) (Fig. 1h). These findings are consistent with gen-
omic features that convey RNA circularization [13-15].
Altogether, circRNAs were produced by each immune cell
type in both healthy individuals and CAP patients. Mono-
cytes were predicted to produce substantially more cir-
cRNAs than T or B cells.

Circular RNA expression patterns in CAP relative to health
Here, we sought to identify significantly altered circRNA
expression in monocytes, T cells, and B cells of CAP

patients relative to healthy samples. In general, cells of
CAP patients produced more circRNA than healthy par-
ticipants (Fig. 2a). Considering multiple-comparison ad-
justed p values, circRNAs from the versican gene
(VCAN; chr5: 83519349-83522309) and chromodomain
helicase DNA binding protein 2 gene (CHD2; chrlb:
93000512-93014909) were significantly more abundant
in monocytes of CAP patients (Fig. 2b, c). A list of de-
tected and altered circRNA can be found in Additional
file 3: Table S1. CircRNA expression differences between
study groups were largely unique to cell type, and none
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showed constitutive alterations in all cells (Fig. 2d). This  significantly altered genes (adjusted p <0.05) in mono-
observation was also evident for linear RNA species with  cytes, CD4+, CD8+ T cells, and B cells, respectively
predominantly cell-type-specific expression patterns in  (Additional file 4: Fig. S3), 1230, 125, 61, and 19 genes
CAP patients compared to healthy subjects (Fig. 2e and  were specifically altered in respective cell types (Fig. 2e).
Additional file 4: Fig. S3). Of the 1340, 227, 113, and 35 Notably, VCAN expression in monocytes was
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significantly higher in CAP relative to health (adjusted
p =0.0013). No differences were detected for CHD2 gene
expression. Our findings showed largely cell-type-
specific circRNA expression patterns and specific cir-
cRNA were significantly altered in monocytes of CAP
patients relative to healthy subjects.

Functional inference of circular RNA

In order to infer on putative functions and potential bio-
logical roles of the altered circRNA identified in each
cell type, we firstly evaluated cellular biological pathway
enrichment of the “host” genes producing the circRNAs.
Genes producing circRNAs that were differentially abun-
dant in monocytes, CD4+, and CD8+ T cells of CAP pa-
tients (relative to healthy subjects) (Fig. 3a—c) were
associated to distinct canonical signaling pathways
(Fig. 3d). In particular, monocyte circRNA was primarily
associated with Notch signaling and ERK signaling path-
ways. Numerous pathways were detected for low expres-
sion circRNA in CD4+ T cells, including FLT3 signaling
in hematopoietic progenitor cells (Fig. 3d), as well as
RAN signaling and UVC-induced MAPK signaling for
CD8+ T cells. High expression circRNA was mainly as-
sociated with IL-15 production and DNA double-strand
break repair by homologous recombination pathways
(Fig. 3d). Secondly, motivated by reported functions of
circRNA as miRNA “sponges” [13], we explored cir-
cRNA sequences for potential miRNA binding regions.
The frequency of miRNA binding sites in circRNA
exons was not different to all other exons in the genome
that did not produce circRNA (Fig. 3e). Therefore, the
lack of miRNA binding site enrichment in the herein
predicted circRNA does not support their role as
miRNA “sponges”.

Experimental validation

Thus far, we have identified putative circRNA species,
their expression patterns, and potential functional path-
ways in different peripheral blood mononuclear cell
types from CAP patients and healthy volunteers. Here,
we sought to provide robustness to our bioinformatics
approach by experimental validation of circRNA exist-
ence in an independent population of healthy subjects.
We focused our attention on the two significantly al-
tered circRNAs in monocytes, that is, VCAN (chr5:
83519349-83522309; circVCAN) and CHD2 (chrl5:
93000512-93014909; circCHD?2). Prior to quantitative
RT-PCR analysis, we treated total RNA from monocytes
with or without the RNA digestion enzyme, RNase R. As
expected, treatment with RNase R resulted in a reduc-
tion in HPRTI transcripts (non-circular endogenous
control) (Fig. 4a). In contrast, no reduction was observed
for circVCAN and circCHD2 (Fig. 4a), which indicated
resistance to RNase digestion. CircVCAN was more
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abundant than circCHD2 (Fig. 4b). These results provide
robustness to the existence of circVCAN and circCHD2
in human monocytes.

Next, we evaluated the inducibility of circVCAN and
circCHD2 by stimulating monocytes with LPS, as well as
clinically relevant K. pneumoniae and S. pneumoniae. As
expected, TNF and IL-6 protein levels in the superna-
tants were significantly elevated after 2- and 24-h stimu-
lation (Fig. 4c). In contrast, circVCAN and circCHD2
were not induced (Fig. 4d). Altogether, our findings pro-
vide benchmark evidence of the existence of circVCAN
and circCHD2 in healthy human monocytes, which were
not inducible by stimulation with LPS nor clinically rele-
vant bacteria.

Discussion

Transcriptional activity of genes is not exclusive to pro-
duction of linear mRNA molecules for translation to
proteins. A variety of mature RNA species can be pro-
duced per gene, including thousands of circRNA. In the
current study, we demonstrated the presence and quan-
tified the abundance of circRNAs in specific PBMCs of
sepsis patients secondary to CAP relative to healthy sub-
jects. In general, circRNA production was significantly
higher in CAP patients relative to healthy patients, and
expression patterns were largely specific to either mono-
cytes, CD4", CD8" T cells, or B cells. Functional infer-
ence showed potential roles of circRNA in distinct
pathways per cell type, including cytokine production
and cell differentiation. Moreover, our data does not
support a reported role of circRNA in sequestration of
miRNA. High-confidence circRNA was detected in
monocytes of an independent cohort of healthy volun-
teers by exoribonuclease RNase R digestion and quanti-
tative RT-PCR. Altogether, our study provides a
benchmark in the identification, characterization, and
potential functional implications of the circRNAome in
important immune cell types of sepsis patients second-
ary to CAP.

Animal genomes produce thousands of circRNA mole-
cules in complex tissue, cell type, and developmental
stage-specific ways [37]. CircRNA represents a novel class
of RNA molecules produced by transcriptional “back-spli-
cing” and composed of only exons, exon-introns, or only
introns. Contrary to the past notion that circRNA repre-
sented by-products of splicing errors, reported functions
include transcriptional regulation of protein-coding RNA.
For example, circRNAs CDRlas (ciRS-7) and circ-SRY
were shown to sequester miRNAs, thereby altering tran-
scriptional outputs [37, 38]. Furthermore, recent studies
suggest circRNA may not only function as non-coding
transcriptional regulators but may also harbor potential
for translation to amino acids, and ultimately proteins
[39]. For instance, overexpression of circ-FBXW7 that
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Ladder, Thermo Scientific GeneRuler DNA Ladder mix #SM0333. b Quantitative RT-PCR normalized expression patterns of VCAN (chr5: 83519349-
83522309) and CHD?2 (chr15: 93000512-93014909) circRNAs in healthy monocytes. ¢ Box plots depicting the production of TNF and IL-6 by
monocytes stimulated with lipopolysaccharide (LPS), heat-killed Streptococcus pneumoniae (Sp), and Klebsiella pneumoniae (Kp) for 2 and 24 h.
*p < 0.05. d Box plots illustrating the normalized expression patterns of circRNAs, circVCAN (chr5: 83519349-83522309) and circCHD2 (chr15:
93000512-93014909), in stimulated monocytes

encodes a novel 21 kDa protein composed of 185 amino
acids, named F-Box and WD Repeat Domain Containing
7 (FBXW?7), repressed cellular proliferation and glioma
tumorigenesis [40]. It is becoming evident that non-
canonical transcriptional “back-splicing” can compete with
canonical linear splicing that produces mRNA for transla-
tion to protein products [41]. In particular, conditions of
cellular stress, for example, in drosophila inhibition of
splicing machinery, were shown to shift the steady-state
output of pre-mRNA splicing towards circularization [42].
Critical illness due to sepsis is associated with severe

cellular stress, which oftentimes precipitates to a condition
of “immunoparalysis,” thereby making immune cells non-
responsive to secondary challenges [4, 7]. The extent of
circRNA effects on immune cell responsiveness and toler-
ance to bacterial ligands (e.g., endotoxin) certainly warrant
exploration.

Assigning biological functions to circRNA is an emer-
ging field of functional genomics. The use of bioinfor-
matics tools and molecular biology can elucidate their
function in cellular physiology and define their role in
disease conditions. The circRNA-miRNA “sponge”
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paradigm has been well characterized in the literature
[43]. Notably, binding of miRNA to circRNA molecules
does not necessarily constitute miRNA suppression.
CircRNA-miRNA complexes may convey susceptibility
to degradation, which in turn release miRNA to the
intracellular milieu. This was evidenced in a recent re-
port that showed ciRS-7 bound to miR-671 created an
Argonaute 2 cleavage site, which released the “passen-
ger” miR-7 in the process and affecting brain function
[44]. Therefore, this suggested that circRNAs may func-
tion as miRNA reservoirs and facilitate miRNA transpor-
tation [45]. Based on our in silico evaluation of miRNA
seed sequences present in exons within circRNA struc-
tures relative to those exons that do not form part of cir-
cRNA, we found no statistical overrepresentation. This
suggests that the altered circRNA levels in monocytes, T
cells, and B cells of sepsis patients relative to healthy
subjects may partake in cellular functions that are not
exclusive to circRNA sponging. Many circRNAs are pre-
dicted to harbor RNA binding protein sites [46], with a
few reports demonstrating the capacity of circRNA for
protein binding. For example, circMBL/MBNLI1 gener-
ated in both drosophila and humans was demonstrated
to specifically and strongly bind to the RNA binding
protein muscleblind (MBL/MBNL) [41]. Furthermore,
and in line with our findings, circRNA expression was
shown to be cell-type-specific [47], which may suggest
functionality of circRNA is also dependent on the type
of cell and differentiation state. Of note, enucleated
blood cells, that is, erythrocytes and platelets, were re-
ported to contain the highest levels of circRNA when
compared to all hematopoietic cell lineages [47].
CircRNA detection has been reported to be in part
dependent on the detection algorithm. Thus, to ascertain
robustness in circRNA detection, it is important to com-
bine bioinformatics and experimental approaches. By le-
veraging on a fundamental property of circRNA, that is,
the lack of a free 3" end required for digestion with
RNase R [13-15], a 3" to 5  exoribonuclease enzyme, it
is possible to differentiate linear and circRNA species. In
this way, we showed that circRNAs VCAN (chrb:
83519349-83522309) and CHD2 (chrl5: 93000512-
93014909) were detectable in healthy monocytes. While
we focused our attention on the two significantly altered
circRNAs in CAP compared to health, the presence of
other circRNA species in all cell types is certainly not
excluded. The limited number of significantly altered
circRNA in CAP relative to health can be explained, at
least in part, by the low sample size in our discovery
phase by RNA-seq. Furthermore, validating circRNA ex-
istence and expression in CAP patients would further
heighten the robustness of our findings, though the
availability of RNA from specific immune cells was limit-
ing. Future studies specifically designed to evaluate
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circRNA expression and biology in larger cohorts of pa-
tients with sepsis are warranted.

Conclusion

In conclusion, this is the first study to delineate the ex-
pression profiles of circRNAs in specific immune cell
types of critically ill patients with sepsis secondary to
CAP relative to health. Levels of circRNA were signifi-
cantly elevated in PBMCs of sepsis patients, with mono-
cytes producing the highest amounts of circRNA relative
to CD4+, CD8+ T cells, and B cells. CircRNA expression
was significantly altered in patients as compared to
healthy subjects, with high specificity for the type of
mononuclear cell. By detecting the existence and accu-
mulation of circRNAs in important immune cell subsets,
our study adds another layer of regulation to the host re-
sponse. Therefore, we provide a framework that not only
offers new insight into the immunopathology of sepsis
but may also represent a novel avenue for drug
discovery.
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