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Abstract

Background: Septic shock is associated with decreased vasopressor responsiveness. Experimental data suggest that
central alpha2-agonists like dexmedetomidine (DEX) increase vasopressor responsiveness and reduce catecholamine
requirements in septic shock. However, DEX may also cause hypotension and bradycardia. Thus, it remains unclear
whether DEX is hemodynamically safe or helpful in this setting.

Methods: In this post hoc subgroup analysis of the Sedation Practice in Intensive Care Evaluation (SPICE III) trial, an
international randomized trial comparing early sedation with dexmedetomidine to usual care in critically patients
receiving mechanical ventilation, we studied patients with septic shock admitted to two tertiary ICUs in Australia
and Switzerland. The primary outcome was vasopressor requirements in the first 48 h after randomization,
expressed as noradrenaline equivalent dose (NEq [μg/kg/min] = noradrenaline + adrenaline + vasopressin/0.4).

Results: Between November 2013 and February 2018, 417 patients were recruited into the SPICE III trial at both
sites. Eighty-three patients with septic shock were included in this subgroup analysis. Of these, 44 (53%) received
DEX and 39 (47%) usual care. Vasopressor requirements in the first 48 h were similar between the two groups.
Median NEq dose was 0.03 [0.01, 0.07] μg/kg/min in the DEX group and 0.04 [0.01, 0.16] μg/kg/min in the usual
care group (p = 0.17). However, patients in the DEX group had a lower NEq/MAP ratio, indicating lower vasopressor
requirements to maintain the target MAP. Moreover, on adjusted multivariable analysis, higher dexmedetomidine
dose was associated with a lower NEq/MAP ratio.
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Conclusions: In critically ill patients with septic shock, patients in the DEX group received similar vasopressor doses
in the first 48 h compared to the usual care group. On multivariable adjusted analysis, dexmedetomidine appeared
to be associated with lower vasopressor requirements to maintain the target MAP.

Trial registration: The SPICE III trial was registered at ClinicalTrials.gov (NCT01728558).
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Background
In septic shock, sympathetic activation and release of en-
dogenous catecholamines are necessary physiological
mechanisms to maintain adequate tissue perfusion [1].
However, excessive release of endogenous catechol-
amines in combination with exogenous catecholamines
can cause sympathetic overstimulation with detrimental
effects on organ function and patient outcomes [2].
Sympathetic overstimulation may also cause downregu-
lation and desensitization of alpha-adrenergic receptors.
Such catecholamine hyposensitivity may also contribute
to hemodynamic instability and poor outcomes [3, 4].
In experimental animal models of sepsis, high doses of

central alpha-2-agonists like clonidine and dexmedeto-
midine increase vasopressor responsiveness [5]. More-
over, even in non-septic patients, alpha-2-agonists are
associated with lower vasopressor requirements [6, 7],
increased arterial blood pressure, and enhanced baro-
receptor response [8, 9]. However, significant
hemodynamic side effects of dexmedetomidine can also
occur such as hypotension and bradycardia [10].
In the Sedation Practice in Intensive Care Evaluation

(SPICE III) Trial, critically ill patients on mechanical
ventilation received early dexmedetomidine for primary
sedation or usual sedation [11]. The study design and
randomization scheme provided the unique opportunity
to explore the hemodynamic effects of dexmedetomidine
in patients with septic shock. Thus, in this two-center
retrospective subgroup analysis of patients with septic
shock included in the SPICE III trial, we assessed the
physiological effects of dexmedetomidine on vasopressor
requirements and blood pressure in the first 48 h after
randomization.

Methods
The SPICE III trial was a randomized, open-label trial
conducted at 74 sites in eight countries [11]. The study
complied with the Declaration of Helsinki and Good
Clinical Practices and was approved by the institutional
review board at participating centers. Written informed
consent was obtained for all patients. The study design,
protocol, and statistical analysis plan have been previ-
ously published [12]. Critically ill adults (18 years or
older) receiving mechanical ventilation for less than 12 h
in the intensive care unit (ICU) were randomized to

receive dexmedetomidine as the sole or primary sedative
or to receive usual care (propofol, midazolam, or other
sedatives), if they were expected to remain on invasive
ventilatory support for longer than the next calendar
day. The primary outcome of the SPICE III trial was the
rate of death from any cause at 90 days.

Study design
The present study is an exploratory, post hoc, retro-
spective subgroup analysis of patients with septic shock
who were enrolled in the SPICE trial III. The subgroup
analysis was performed at two of the participating cen-
ters, the Austin Hospital, Melbourne, Australia, and the
University Hospital of Bern, Switzerland, and was ap-
proved by the ethics committees at both sites (approval
number LNR/15/Austin/391 and KEK-ID2018-00746).

Inclusion and exclusion criteria
In addition to the abovementioned inclusion criteria of
the SPICE III trial, patients had to meet all the following
criteria to be eligible for this subgroup analysis: docu-
mented (or strong suspicion of) infection with at least 2
clinical signs of inflammation (temperature > 38 °C or <
36 °C, heart rate > 90/min, respiratory rate > 20/min, or
PaCO2 < 32mmHg, white cell count > 12 × 109/l or <
4 × 109/l or > 10% immature neutrophils), and adminis-
tration of vasopressors or inotropes prior to
randomization and for a cumulative duration of ≥ 4 h to
maintain blood pressure targets set by the treating
clinician.
In addition to the exclusion criteria of the SPICE III

trial, we excluded patients meeting our inclusion criteria
more than 24 h before randomization. A detailed list of
all inclusion and exclusion criteria is given in the supple-
mentary appendix. To reflect the effects of the interven-
tion (dexmedetomidine or usual care) unaffected by
protocol deviations or non-adherence, we performed a
per-protocol analysis excluding patients who did not re-
ceive the allocated sedation regimen and patients whose
treatment goal was changed to end-of-life care within
the first 48 h after randomization.

Clinical outcomes
The primary outcome was the median vasopressor dose
in the first 48 h after randomization, expressed as
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noradrenaline equivalent dose (NEq). We calculated
NEq using the method described by Khanna and co-
workers [13] as

NEq μg=kg= min½ � ¼ noradrenalineþ adrenaline
þ vasopressin=0:4

to account for the different vasopressors used at the
two study sites. Secondary outcomes included cumula-
tive and peak NEq dose, change in NEq dose from base-
line to peak dose, and the ratio of NEq to MAP (NEq/
MAP), to account for different blood pressure targets set
by the treating physician. Exploratory outcomes included
cumulative duration of vasopressor support, ICU and
hospital mortality, duration of mechanical ventilation,
and ICU length of stay.

Data collection
Data collection was performed using existing ICU-based
electronic databases (Cerner Electronic Health Record,
North Kansas City, MO, USA, and Centricity Critical
Care, Clinisoft, GE Healthcare Europe, Helsinki, Finland)
and medical record review. Whenever possible, data
were downloaded from electronic medical records. Con-
tinuous measurements, recorded at minimum once every
2 min, were resampled to obtain hourly median values
of hemodynamic data, sedative and vasoactive drug
doses for the first 48 h after randomization. Arterial
blood pressure was monitored invasively in all patients.
Where manual data collection was necessary, it was per-
formed using double data entry or cross-checked by a
second investigator. Demographic data and patient-
centered outcomes were obtained from the SPICE III
database.

Statistical analysis
Data was initially assessed for normality and log-
transformed where appropriate. Group comparisons
were performed using chi-square tests for equal propor-
tion, Student’s t tests for normally distributed data, and
Wilcoxon rank-sum tests otherwise, with results pre-
sented as numbers (%), means (standard deviations), or
medians (interquartile range), respectively. Longitudinal
analysis was performed using mixed linear modeling fit-
ting main effects for treatment, time, and an interaction
between the two to determine if groups behaved differ-
ently over time. Multivariable longitudinal sensitivity
analyses were performed firstly adjusting for baseline im-
balance and known covariates (admission diagnosis, hos-
pital site, ratio of noradrenaline equivalent over mean
arterial pressure at baseline, continuous renal replace-
ment therapy, age, administration of hydrocortisone, and
presence of liver cirrhosis) and then secondly adjusting
for the same covariates but with treatment group

replaced by actual dexmedetomidine dosage. Compari-
son of proportions for secondary outcomes was deter-
mined using logistic regression with results presented as
odds ratios (95%CI). Differences for continuous second-
ary outcomes were determined using quantile regression
with results presented as difference of medians (95%CI).
To account for the competing risk of death, durations of
vasopressor support and ventilation are presented as cu-
mulative incidence functions with censoring for death
and comparison using Grey’s test. Time to death was
displayed using Kaplan-Meier curves with comparison
using a log-rank test. All data were analyzed using SAS
software, version 9.4 (SAS Institute Inc., Cary, NC,
USA), and a two-sided p value of 0.05 was used to indi-
cate statistical significance. No adjustments were made
for multiple comparisons.

Sample size
With a minimum of 38 patients per group, this study
had > 90% power (2-sided p value) to detect a difference
in noradrenaline requirement equivalent to 75% of one
standard deviation. Across the range of the data, a differ-
ence of this magnitude approximately equates to a 20%
difference, which is perceived to be of clinical
importance.

Results
Characteristics of the patients
Between November 2013 and February 2018, 417 pa-
tients were recruited in the SPICE III trial at both sites
(196 patients at the Austin Hospital and 221 patients at
the University Hospital of Bern). Among those who pro-
vided written informed consent, 87 patients fulfilled our
inclusion criteria of septic shock. After excluding two
patients from each group who did not receive the
assigned sedation, 83 patients were included in the ana-
lysis. Of these, 44 (53%) had been assigned to receive
dexmedetomidine (DEX group) and 39 (47%) to usual
care. Fifty-seven patients (68.7%) were male, with a mean
age of 65.4 years, and a mean pre-randomization APAC
HE II score of 25.1. Patient characteristics and treatment
at randomization were similar in the two groups, except
for a higher creatinine level and higher coagulation com-
ponent of the SOFA score in the usual care group
(Table 1).

Clinical outcomes
In the first 48 h after randomization, there was no sig-
nificant difference in median NEq dose between the
DEX group and the usual care group (Table 2 and Fig. 1).
Similarly, we found no significant difference in cumula-
tive NEq dose, peak NEq dose, and relative change in
NEq from baseline to peak dose between the two
groups.
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Table 1 Patient characteristics at baseline

Variable DEX (n = 44) Usual care (n = 39) p value

Study site—no. (%) 0.77

Australia 20 (45.5) 19 (48.7)

Switzerland 24 (54.5) 20 (51.3)

Age (years)—mean ± SD 67.7 ± 12.4 62.9 ± 16.8 0.14

Male sex—no. (%) 29 (65.9) 28 (71.8) 0.56

Weight (kg)—mean ± SD 80.6 ± 17.7 85.3 ± 31.4 0.39

APACHE II score—mean ± SD 24.9 ± 6.7 25.3 ± 7.0 0.77

Chronic health conditions—no.(%)

Diabetes mellitus treated with insulin 4 (9.1) 2 (5.1) 0.68

Chronic hemodialysis 1 (2.3) 1 (2.6) > 0.99

Liver cirrhosis 1 (2.3) 1 (2.6) > 0.99

Portal hypertension 1 (2.3) 3 (7.7) 0.34

Immunosuppression by disease 1 (2.3) 2 (5.1) 0.60

Immunosuppression by therapy 2 (4.5) 3 (7.7) 0.66

ICU admission source—no. (%) 0.91

Emergency department 13 (29.5) 13 (33.3)

Hospital ward 18 (40.9) 13 (33.3)

Operating room 7 (15.9) 9 (23.1)

Another ICU 1 (2.6) 1 (2.3)

Other hospitals 5 (11.4) 3 (7.7)

Surgical admission—no. (%) 8 (18.2) 10 (25.6) 0.41

Primary site of infection—no. (%)

Respiratory 26 (59.1) 18 (46.2) 0.24

Gastrointestinal 10 (22.7) 14 (35.9) 0.19

Skin/soft tissues/bone 3 (6.8) 4 (10.3) 0.7

Urinary 1 (2.3) 1 (2.6) > 0.99

Blood 2 (4.5) 0 (0.0) 0.5

Other 2. (4.5) 2 (5.1) > 0.99

Organ-specific SOFA score—median [IQR]

Cardiovascular 3 [3, 3] 3 [3, 4] 0.06

Respiratory 2 [2, 3] 2 [2, 3] 0.80

Renal 1 [0, 3] 2 [0, 3] 0.27

Coagulation 0 [0, 0] 1 [0, 2] 0.006

Liver 0 [0, 1] 1 [0, 2] 0.14

NEq (μg/kg/min)—median [IQR] 0.05 [0.03, 0.10] 0.07 [0.02, 0.16] 0.32

Continuous vasoactive drugs at baseline—no. (%)

Noradrenaline 38 (86.4) 35 (89.7) 0.64

Adrenaline 4 (9.1) 2 (5.1) 0.68

Dobutamine 1 (2.3) 3 (7.7) 0.34

Vasopressin 1 (2.3) 2 (5.1) 0.60

Sedative and analgesic drugs at baseline—no. (%)

Propofol 31 (73.8) 33 (86.8) 0.15

Fentanyl 26 (61.9) 30 (78.9) 0.10

Midazolam 20 (47.6) 16 (42.1) 0.62
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Table 1 Patient characteristics at baseline (Continued)

Variable DEX (n = 44) Usual care (n = 39) p value

Morphine 5 (11.9) 3 (7.9) 0.55

Ketamine 2 (4.8) 2 (5.3) > 0.99

Other treatments at baseline—no. (%)

Continuous renal replacement therapy 10 (22.7) 13 (33.3) 0.28

Hydrocortisonea for septic shock 19 (43.2) 16 (41.0) 0.84

Physiological variables

Fluid balance at baseline (ml)—median [IQR] 876 [− 21, 2600] 621 [− 67, 2378] 0.88

Heart rate (beats/min)—median [IQR] 85 [74, 99.5] 95 [80, 105] 0.10

Mean arterial pressure (mmHg)—mean ± SD 65.4 ± 8.35 66.1 ± 8.85 0.71

Creatinine level (mg/dl)—median [IQR] 1.23 [0.78, 2.12] 1.76 [1.14, 2.34] 0.044

Creatinine level (μmol/l)—median [IQR] 109 [69, 187] 156 [101, 207] 0.044

Lactate level (mmol/l)—median [IQR] 1.8 [1.4, 2.7] 1.95 [1.4, 3.1] 0.58

RASS prior randomization—median [IQR] − 3 [− 4, 1] − 3 [− 4, − 2] 0.69

Time from ICU admission to randomization (h)—median [IQR] 8.8 [3.6, 12.4] 11.1 [4.7, 19.1] 0.22

Time from ICU admission to start of vasopressors (h)—median [IQR] 1.4 [0.5, 3.5] 2.7 [0.4, 5.1] 0.39

Categorical values are expressed as numbers (%). Continuous variables are presented as means ± SD if normally distributed, otherwise as medians [IQR]
APACHE Acute Physiology And Chronic Health Evaluation, DEX dexmedetomidine, ICU intensive care unit, NEq noradrenaline equivalents, RASS: Richmond
Agitation-Sedation Scale, SOFA Sequential Organ Failure Assessment
aIn the first 48 h after randomization

Table 2 Clinical outcomes

Outcome DEX (n = 44) Usual care (n = 39) Estimate (95%CI) p value

Difference in medians

NEq dosea, μg/kg/min 0.03 [0.01, 0.07] 0.04 [0.01, 0.16] − 0.01 [− 0.06, 0.04] 0.17

Noradrenaline dosea, μg/kg/min 0.03 [0.01, 0.07] 0.05 [0.01, 0.15] − 0.01 [− 0.06, 0.03] 0.08

Cumulative NEq dosea, μg/kg/48 h. 1.51 [0.51, 3.60] 2.14 [0.58, 7.78] − 0.62 [− 3.18, 1.93] 0.19

Peak NEq dosea, μg/kg/min 0.12 [0.05, 0.20] 0.16 [0.08, 0.32] − 0.03 [− 0.12, 0.06] 0.24

Change in NEq dose from baseline to peak levela, μg/kg/min 0.05 [0.01, 0.12] 0.05 [0.01, 0.14] − 0.01 [− 0.06, 0.05] 0.61

Total duration of vasopressor supportb, h 51.6 [18.3, 99.7] 45.7 [19.6, 159.0] 3.1 [− 30.7, 36.9] 0.72

Survivors (n = 67) 35.6 [18.3, 69.4] 40.3 [22.2, 75.6] − 3.5 [− 30.1, 23.1] 0.64

Non-survivors (n = 16) 186.0 [59.0, 311.0] 70.4 [19.4, 168.0] 19.8 [− 173.1, 212.6] 0.42

Duration of invasive ventilationb, days 2.2 [1.1, 5.9] 2.8 [1.2, 9.6] − 0.5 [− 3.8, 2.8] 0.60

Hospital length of stayb, days 15.5 [9.4, 24.4] 13.2 [7.7, 21.0] − 2.2 [− 8.5, 4.1] 0.30

ICU length of stayb, days 4.2 [2.7, 10.2] 4.7 [3.0, 11.3] − 0.4 [− 3.4, 2.6] 0.67

Survivors (n = 67) 4.1 [3.0, 9.2] 4.3 [3.2, 7.0] − 0.1 [− 2.7, 2.3] 0.70

Non-survivors (n = 16) 8.9 [2.4, 16.2] 8.3 [0.8, 11.3] − 3.3 [− 16.2, 9.6] 0.87

Odds ratio (95% CI)

Patients alive and vasopressor-free at 48 h after randomization 20 (45.5) 18 (46.2) 0.97 (0.41–2.31) 0.95

ICU mortality 6 (13.6) 10 (25.6) 0.46 (0.15–1.41) 0.17

Hospital mortality 9 (20.5) 12 (30.8) 0.58 (0.21–1.57) 0.28

Day 90 mortality 12 (27.3) 13 (34.2) 0.72 (0.28–1.85) 0.50

Categorical values are expressed as numbers (%). Continuous variables are presented as medians [IQR]
DEX dexmedetomidine, IQR interquartile range, 95% CI 95% confidence interval, ICU intensive care unit, MAP mean arterial pressure, NEq
noradrenaline equivalents
aIn the first 48 h after randomization
bWithin principal hospital admission, measured from randomization
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Over the first 48 h, patients in the DEX group had a
numerically higher MAP (Fig. 2), although the differ-
ences did not reach statistical significance. However,
vasopressor requirements to maintain the target MAP
(expressed by the NEq/MAP ratio) were lower in the
DEX group compared to the usual care group (ratio of
difference in geometric means 1.74 [1.02, 2.95], p =
0.04). This result remained significant when adjusted for

admission diagnosis, hospital site, baseline NEq/MAP ra-
tio, continuous renal replacement therapy, age, adminis-
tration of hydrocortisone, and liver cirrhosis (ratio of
adjusted difference in geometric means 1.44 [1.07–1.95],
p = 0.02) (Fig. 3).
On multivariable sensitivity analysis adjusting for ac-

tual dexmedetomidine dosage, the results were consist-
ent with the above findings: Dexmedetomidine dose was

Fig. 1 Noradrenaline equivalent dose in the first 48 h after randomization. Data are presented as geometric means and 95% confidence intervals,
overall group difference p = 0.054

Fig. 2 Mean arterial pressure in the first 48 h after randomization. Data are presented as mean with standard error, overall group
difference p = 0.06
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associated with a reduction in the NEq/MAP ratio (par-
ameter estimate of − 0.17 +/− 0.07; p = 0.02), indicating
lower vasopressor requirements to maintain the target
MAP. The NEq/MAP ratio was significantly greater in
patients treated in Australia, in patients not on continu-
ous renal replacement therapy, without liver disease,
without portal hypertension, or with a renal or cardio-
vascular APACHE admission category (Table 3).
There was no significant difference in ICU and hos-

pital length of stay, number of patients alive and
vasopressor-free at 48 h, time to vasopressor weaning,
duration of invasive ventilation, and mortality between
the two groups (Table 2 and Figs. 4, 5, and 6). Unlike
the SPICE III trial, in the present sub-study, we found
no significant difference in outcomes when comparing
age groups above and below the median age (63.7 years)
(Table S4).

Process of care
Nineteen patients (43.2%) in the DEX group and 16 pa-
tients (41.0%) in the usual care group received hydrocor-
tisone (p = 0.84). Vasoactive drugs were discontinued
within 48 h of randomization in 21 (47.7%) patients in
the DEX group and 21 (53.8%) patients in the usual care
group (p = 0.58). Patients in the DEX group received sig-
nificantly lower doses of propofol and less midazolam.
However, they received similar doses of opioids (Table
S1). The median Richmond Agitation-Sedation Scale
(RASS) score on study day 1 was − 4 [− 4, − 2] in the
DEX group and − 4 [− 4, − 3] in the usual care group

(p = 0.42). There was no significant difference regarding
treatment with vasopressors, inotropes, and hydrocorti-
sone between patients treated before and after the publi-
cation of the 2016 sepsis guidelines (Table S5).

Adverse events
Adverse events were prospectively collected during the
original SPICE III trial. Due to the un-blinded study de-
sign, events were reported by site investigators but not
systematically collected in both groups. Bradycardia was
defined as heart rate < 55 beats per minute requiring
intervention (e.g., pacing, pharmacological support, or
modification of dexmedetomidine or other medication
doses). Hypotension was defined as hypotension which
is clinically significant in the Principal Investigator’s
opinion. In our cohort, hypotension was reported in
seven (15.9%) patients in the DEX group and one (2.6%)
patient in the usual care group (p = 0.04). Bradycardia
occurred in five patients (11.4%), all were from the DEX
group (p = 0.06). Serious adverse events occurred in two
patients in the DEX group (hypotension) and one patient
in the usual care group (cardiac arrest, survived) (Table
S2).

Discussion
In this exploratory post hoc retrospective subgroup ana-
lysis of ICU patients with septic shock requiring mech-
anical ventilation, patients receiving early sedation with
dexmedetomidine as the primary sedative agent had
similar vasopressor requirements in the first 48 h

Fig. 3 Adjusted ratio of noradrenaline equivalents divided by MAP (NEq/MAP ratio) in the first 48 h after randomization. Adjusted for admission
diagnosis, hospital site, baseline NEq/MAP ratio, continuous renal replacement therapy, age, administration of hydrocortisone and presence of
liver cirrhosis. NEq/MAP: Noradrenaline equivalents to mean arterial pressure ratio (a higher ratio indicates higher vasopressor need to maintain a
certain MAP). Data are presented as geometric means and 95% confidence intervals, overall group difference p = 0.02
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compared to usual care. On adjusted exploratory ana-
lysis, dexmedetomidine appeared to be associated with
lower vasopressor requirements to maintain the target
MAP.
As alpha-2 agonist, dexmedetomidine may increase

the risk of hypotension and bradycardia [14, 15] and, in
patients with septic shock, this may be both dangerous
and harmful. However, experimental data also suggest
that dexmedetomidine can be administered in septic
shock and may even have catecholamine-sparing effects
[5, 16–21]. Our findings are consistent with such experi-
mental observations. In a subgroup analysis of septic pa-
tients (n = 63) from the Maximizing Efficacy of Targeted
Sedation and Reducing Neurological Dysfunction
(MENDS) trial, the incidence of hypotension, vasopres-
sor use, and cardiac arrhythmias were similar in both
groups (dexmedetomidine vs. lorazepam-based sed-
ation), but the trial was not powered to detect a differ-
ence in cardiovascular outcomes [22]. A retrospective
study by Nelson et al. compared clinically significant
hemodynamic events in adults with septic shock

receiving dexmedetomidine (n = 37) or propofol (n = 35)
(Nelson 2018). Dexmedetomidine was not associated
with more episodes of hypotension or bradycardia
(29.7% vs. 31.4, p = 0.99) [23]. A prospective open-label
crossover study in 38 patients with septic shock found a
reduction of catecholamine requirements after switching
from propofol to dexmedetomidine [18]. However, both
studies included resuscitated patients on stable vasopres-
sor doses for at least 2 h, and, in the latter study, data
collection was limited to the first 8 h.
In animal models of sepsis, high doses of central

alpha2-agonists increase vasopressor responsiveness [5].
Moreover, dexmedetomidine reduces noradrenaline re-
quirements and maintains renal function in experimen-
tal septic acute kidney injury [17]. In healthy volunteers,
dexmedetomidine decreases plasma levels of both nor-
adrenaline and adrenaline [9]. The mechanisms behind
these findings are not fully understood, and different hy-
potheses have been proposed to explain how alpha-2 ag-
onists improve vasopressor responsiveness. One
hypothesis is that alpha-2 agonists have the potential to

Table 3 Multivariable adjusted analysis of the association between hourly dexmedetomidine dose and noradrenaline equivalent to
MAP ratio (NEq/MAP)

Effect Estimate Standard error p value

Dexmedetomidine, per μg/kg/h increase − 0.165 0.071 0.02

Age, per year increase − 0.003 0.003 0.38

Baseline log NEq/MAP, per unit increase 0.312 0.059 < 0.001

Location

Switzerland − 0.672 0.101 < 0.001

Australia 0

No hydrocortisone 0.134 0.108 0.22

hydrocortisone 0

No CRRT − 0.635 0.105 < 0.001

CRRT 0

No liver cirrhosis − 1.371 0.247 < 0.001

Liver cirrhosis 0

No portal hypertension − 0.477 0.174 0.008

Portal hypertension 0

APACHE III admission diagnosis

Cardiovascular 0.678 0.272 0.02

Gastrointestinal 0.186 0.125 0.14

Hematological 0.091 0.696 0.90

Musculoskeletal − 0.286 0.365 0.44

Renal 2.399 0.317 < 0.001

Respiratory 0.086 0.111 0.44

Sepsis 0

Adjusted for admission diagnosis, hospital site, baseline NEq/MAP ratio, continuous renal replacement therapy, age, administration of hydrocortisone, and
presence of liver cirrhosis
APACHE Acute Physiology And Chronic Health Evaluation, CRRT continuous renal replacement therapy, MAP mean arterial pressure, NEq noradrenaline equivalents,
NEq/MAP noradrenaline equivalents to MAP ratio (a higher ratio indicates higher vasopressor need to maintain a certain MAP)
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prevent downregulation and/or lead to resensitization of
alpha-1 adrenergic receptors by reducing the sympa-
thetic outflow and the release of endogenous catechol-
amines in sepsis [4, 24]. Presumably, lowering
endogenous noradrenaline levels improves the action of
exogenous noradrenaline on vascular α-1 receptors [5].
The second hypothesis suggests an anti-inflammatory ef-
fect of DEX [25–30], mediated by the vagus nerve and
the so-called cholinergic anti-inflammatory pathway
[31], a neural circuit that responds to and regulates the
inflammatory response via the release of acetylcholine
[8]. Finally, α-2 agonists may act via local vascular mech-
anisms on vascular smooth muscle cells [32] and the
presynaptic action of α-2 agonists could, by reducing the
release of endogenous noradrenaline, lead to an upregu-
lation of postsynaptic α-1 receptors [5].
Our findings that sedation with dexmedetomidine

does not increase vasopressor requirements in the first
48 h imply that dexmedetomidine may be used in pa-
tients with septic shock without worsening
hemodynamic instability. Our findings neither support
nor refute the hypothesis that dexmedetomidine has a
catecholamine-sparing effect in this setting, although the

association of dexmedetomidine with a lower NEq/MAP
ratio points towards lower overall vasopressor require-
ments to maintain the target MAP. However, because
we did not pre-specify this outcome and we did not ad-
just for multiple comparisons, this finding should be
considered exploratory. Moreover, the percentage of
RASS scores below − 2 on study day 1 was higher in the
usual care group compared to the DEX group, indicating
deeper sedation in the usual care group in the first 24 h.
This may, at least in part, explain the lower vasopressor
requirements in the DEX group. Notwithstanding these
limitations, the observed trend towards higher MAP in
the DEX group and its potential to lower vasopressor re-
quirements support further explorations of
dexmedetomidine-based sedation in mechanically venti-
lated patients with septic shock.

Strengths and limitations
Our study has several strengths. First, we studied pa-
tients in septic shock randomly assigned to one of two
treatment strategies (early DEX sedation vs. usual care)
and analyzed the hemodynamic effects of dexmedetomi-
dine compared to usual care sedation. Second, we

Fig. 4 Cumulative incidence curves for time to vasopressor weaning (with deaths treated as a competing risk) and comparison using Grey’s test.
Shaded areas represent 95% confidence intervals
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obtained granular and detailed data from two academic
ICUs on hemodynamic parameters, level of sedation,
dose, and duration of vasoactive and sedative drugs.
Third, we used data from the original SPICE III data-
base, electronic patient health records (whenever pos-
sible), and double data entry for manually collected data,
to minimize the risk of ascertainment bias.
Our study is a retrospective exploratory subgroup ana-

lysis, not prespecified in the SPICE III study protocol
and, therefore, comes with inevitable limitations. All
findings must be interpreted strictly as hypothesis gener-
ating. However, due to the existing clinical equipoise re-
garding benefits and risks of using dexmedetomidine in
patients with septic shock, our results have incremental
value in adding to our understanding of the
hemodynamic effects of dexmedetomidine in such pa-
tients. Because the goal of this investigation was to ex-
plore the effects of dexmedetomidine on hemodynamic
parameters and vasopressor use, we excluded two pa-
tients in each group who did not receive the assigned
treatment and opted for a per-protocol instead of an
intention-to-treat analysis. However, baseline character-
istics of patients included were similar, and it is unlikely

that including these four patients would have materially
altered our results. Hemodynamic management was not
dictated by protocol and, as management of vasodilatory
shock differs with respect to utilization of steroids and
vasopressors [33], we cannot exclude a bias related to
the open-label design of the SPICE III study or due to
clinical preferences. However, by calculating the NEq/
MAP ratio we sought to account for the different types
of vasopressors used and for the individual MAP targets
prescribed by the treating clinicians; the proportion of
patients treated with hydrocortisone was similar in both
groups, and we included hydrocortisone in our multivar-
iable adjusted analysis. Finally, DEX was associated with
more episodes of bradycardia and hypotension, as
already reported in the SPICE trial (11). Thus, although
the overall effect of using DEX as the primary sedating
agent in mechanically ventilated patients with septic
shock appears to improve the vasopressor dose to MAP
ratio in the first 48 h, in some patients it may precipitate
unwanted hemodynamic changes. Accordingly, caution
should be exercised when starting the infusion and in
administering this agent in patients at risk of
bradycardia.

Fig. 5 Cumulative incidence curves for the duration of invasive ventilation from randomization (with deaths treated as a competing risk) and
comparison using Grey’s test. Shaded areas represent 95% confidence intervals
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Conclusion
In critically ill patients with septic shock, compared to
usual care, patients receiving early sedation with dexme-
detomidine as the primary sedative agent had similar
vasopressor requirements in the first 48 h compared to
usual care. On multivariable adjusted analysis, dexmede-
tomidine appeared to be associated with lower vasopres-
sor requirements to maintain the target MAP. These
findings should be interpreted as exploratory and hy-
pothesis generating. However, they provide a rationale
for further randomized trials evaluating dexmedetomi-
dine in patients with septic shock.
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