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Abstract

Background: Most deaths of comatose survivors of out-of-hospital sudden cardiac arrest result from withdrawal of
life-sustaining treatment (WLST) decisions based on poor neurological prognostication and the family’s intention.
Thus, accurate prognostication is crucial to avoid premature WLST decisions. However, targeted temperature
management (TTM) with sedation or neuromuscular blockade against shivering significantly affects early
prognostication. In this study, we investigated whether heart rate variability (HRV) analysis could prognosticate poor
neurological outcome in comatose patients undergoing hypothermic TTM.

Methods: Between January 2015 and December 2017, adult patients with out-of-hospital sudden cardiac arrest,
successfully resuscitated in the emergency department and admitted to the intensive care unit of the Niigata
University in Japan, were prospectively included. All patients had an initial Glasgow Coma Scale motor score of 1
and received hypothermic TTM (at 34 °C). Twenty HRV-related variables (deceleration capacity; 4 time-, 3 geometric-,
and 7 frequency-domain; and 5 complexity variables) were computed based on RR intervals between 0:00 and 8:00
am within 24 h after return of spontaneous circulation (ROSC). Based on Glasgow Outcome Scale (GOS) at 2 weeks
after ROSC, patients were divided into good outcome (GOS 1-2) and poor outcome (GOS 3-5) groups.

Results: Seventy-six patients were recruited and allocated to the good (n =22) or poor (n = 54) outcome groups. Of
the 20 HRV-related variables, In very-low frequency (In VLF) power, detrended fluctuation analysis (DFA) (a1), and
multiscale entropy (MSE) index significantly differed between the groups (p =0.001), with a statistically significant
odds ratio (OR) by univariate logistic regression analysis (p =0.001). Multivariate logistic regression analysis of the 3
variables identified In VLF power and DFA (al) as significant predictors for poor outcome (OR = 0436, p = 0.006 and
OR=0.709, p=0.024, respectively). The area under the receiver operating characteristic curve for In VLF power and
DFA (a1) in predicting poor outcome was 0.84 and 0.82, respectively. In addition, the minimum value of In VLF power
or DFA (a1) for the good outcome group predicted poor outcome with sensitivity = 61% and specificity = 100%.

Conclusions: The present data indicate that HRV analysis could be useful for prognostication for comatose patients
during hypothermic TTM.
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Background

Despite progress in practices of cardiopulmonary resuscita-
tion and post-cardiac arrest care, most survivors of out-of-
hospital sudden cardiac arrest remain comatose due to
severe hypoxic-ischemic brain injury [1]. However, most
deaths in these patients result from withdrawal of life-
sustaining treatment (WLST) decisions based on poor
neurological prognostication and the family’s intention [2,
3]. Thus, accurate prognostication of poor neurological
outcome is crucial not only to avoid premature WLST
decisions, but also to avoid unnecessary examinations or
expensive treatments and lengthy anxious waiting periods
for families of patients who will have a poor outcome.

Recent cardiopulmonary resuscitation guidelines strongly
recommend targeted temperature management (TTM) for
comatose survivors after return of spontaneous circulation
(ROSC) [4, 5]. TTM with sedation or a neuromuscular
blocking agent for control of shivering significantly affects
early and accurate prognostication [6, 7]. The diagnostic
accuracy of a robust prognosticator for poor outcome is
recommended to have a specificity of > 95% (negative pre-
dicting value < 5%) in clinical settings [6—8].

Traditionally, heart rate variability (HRV) provides a
convenient and noninvasive method to assess the bal-
ance between sympathetic and parasympathetic activities
of the autonomic nervous system [9]. Numerous studies
have shown that time- or frequency-domain variables of
HRV can reflect clinical severity and prognosis in inten-
sive care unit (ICU) patients [10, 11]. Recently, complex-
ity variables based on the nonlinear fractal dynamics of
human HRV have been shown to provide additional
prognostic information and complement traditional
time- and frequency-domain variables [12, 13].

Several prior studies have indicated that HRV-related
variables may predict the outcome of comatose patients
after ROSC. Huikuri et al. reported that ROSC patients
had a lower standard deviation of all RR intervals (SDNN)
or high-frequency power per 24h compared with non-
cardiac arrest patients [14]. Dougherty and Burr reported
that the SDNN and low-frequency power per 24h were
significantly related to 1-year mortality [15]. Chen et al.
showed that normalized low-frequency power of a 10-min
RR interval was a significant predictor of 24-h mortality
[16]. However, the post ROSC patients in these studies
were not treated with hypothermic TTM.

In the present study, we investigated HRV-related prog-
nosticators within 24 h after ROSC in patients with an initial
Glasgow Coma Scale (GCS) motor score of 1 undergoing
hypothermic TTM.

Methods

This prospective, observational, single-center study
was approved by the local ethical committee of the
Medical Faculty of Niigata University.
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Participants

Between January 1, 2015, and December 31, 2017,
adult patients with out-of-hospital sudden cardiac ar-
rest who were transferred to the emergency depart-
ment at Niigata University Hospital and successfully
resuscitated were consecutively enrolled. All resusci-
tated patients were admitted to the Niigata University
Hospital ICU.

Patients were eligible for participation if they met the
following criteria: more than 16 years old, GCS motor
scale of 1 at first evaluation after ROSC, and sinus
rhythm. Exclusion criteria were as follows: traumatic
cardiac arrest, cardiac arrest due to cerebral origins,
normothermic TTM (36 °C), new onset of atrial fibrilla-
tion or atrial flutter rhythm, and hemodynamically un-
stable patients (severe hypotension).

Study protocol

All patients were mechanically ventilated to maintain
normocapnia (PaCO, 35-45 mmHg) under sedation
with continuous intravenous infusion of midazolam
(0.1-0.2mgkg ' h™) with fentanyl (0.1-0.2 ugkg™"
h™). Rocuronium bromide was continuously infused
to mitigate uncontrollable shivering (500-750 ug
kg h™h.

TTM targeting 34 °C of bladder temperature for 24
h was introduced and maintained with an intravascu-
lar cooling device (Thermogard XP°, Asahikasei Zoll
medical, Japan) or a body surface cooling device (Arc-
tic Sun 2000°, IMI, Japan). During hypothermia, a
mean arterial pressure (MAP) >60 mmHg was main-
tained with fluid resuscitation and/or continuous infu-
sion of noradrenaline. All patients were rewarmed at
a rate of 0.25°Ch™'. Patients who could not maintain
MAP >60 mmHg with these methods were excluded
from the study. The treating ICU physicians were
blinded to the following HRV-related metrics during
study period.

Assessment of decelerating capacity; time-, frequency-,
and geometrical-domain; and complexity variables of
HRV

Electrocardiograms (ECG) were continuously moni-
tored with a bedside monitor (IntelliVue MP70° Phi-
lips, Japan), and the ECG wave data were captured at
a sampling frequency of 250 Hz with 14-bit resolution
and automatically stored in the dedicated server. RR
intervals between 0:00 am and 8:00 am within the first
24h post-ROSC were identified by wqrs algorithm
[17] and stored as a comma-separated value file
(CSV) after 5 points moving averaging. The 8-h re-
cording was started at midnight because this time-
frame had fewer external stimuli such as physiological
examinations or family visits.
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Sinus rhythm was considered only when RR inter-
vals were between 300 and 2000 ms and differed <
20% from the average of five preceding sinus rhythm
RR intervals, and consecutive RR interval differences
were <200ms [18]. Any RR intervals not based on
the above sinus rhythm criteria were replaced with
the average value of the five preceding sinus rhythm
RR intervals. When the replacement number divided
by the entire RR intervals (replacement ratio) was >
20%, the patient was excluded from this study.

Decelerating capacity (DC) was computed using the
software program calc-prsa (version 1.3.0) that was
developed based on the phase-rectified signal aver-
aging technique [19].

The method used for time-, frequency-, and
geometric-domain HRV analysis has been described
elsewhere and adhered to the standards developed by
the Task Force of the European Society of Cardiology
and the North American Society of Pacing and Elec-
trophysiology [20].

For the time-domain variables, the average of all RR
intervals (AVNN), the SDNN, square root of the
mean of the squares of differences between adjacent
RR intervals (rMSSD), and the percentage of differ-
ences between adjacent RR intervals > 50 ms (pNN50)
were computed.

For the frequency-domain variables, a Lomb-Scargle
periodogram was plotted to measure the spectral
power of the ultra-low-frequency range (ULF, 0-
0.003 Hz), the very-low-frequency range (VLF, 0.003—
0.04 Hz), the low-frequency range (LF, 0.04—0.15Hz),
the high-frequency range (HF, 0.15-0.4 Hz), the total
power (TP, 0-0.4Hz), the ratio of low- to high-
frequency power (LF/HF), and the slope of the linear
interpolation between 10™* and 102Hz of the
spectrum in a log-log scale (power-law slope, expo-
nent ). All measured powers were expressed as nat-
ural logarithm (In).

For the geometric-domain variables, the total num-
ber of all RR intervals was divided by the height of
the histogram of all RR intervals measured on a
discrete scale with bins of 7.185 ms (triangular index),
and RR interval was plotted as a function of the pre-
vious one (Poincaré plot). SD1 and SD2 are the two
dispersions (standard deviations [SD]) of projections
of the Poincaré plot on the line of identity (y=x) and
on the line perpendicular to the line of identity (y = -
x), respectively [21].

For the complexity variables, approximate entropy
(ApEn) and sample entropy (SampEn) were computed
with a parameter of m =2 and similarity criterion =
20% of SD [22]. Multiscale entropy (MSE) index was
defined as the sum of the sample entropy at a scale
factor of 1-20 [23]. Detrended fluctuation analysis
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(DFA) was measured to quantify fractal scaling prop-
erties of the RR interval [24]. The scaling properties
were defined separately for short-term (4<n<16
beats, «a;) and long-term (n>16 beats, a;) RR
intervals.

DC, rMSSD, pNN50, In LF power, In HF power,
and LF/HF were computed from the segment of 512
RR intervals, and the averaged values of the entire RR
intervals were calculated. AVNN, SDNN, triangular
index, In total power, In ULF power, In VLF power,
ApEn, SampEn, and MSE index were computed for
the entire RR intervals. SD1, SD2, DFA («;), and DFA
(ap) were computed from the segment of 1000 RR in-
tervals, and the averaged values of the entire RR in-
tervals were calculated.

All variables except DC were computed with programs
downloaded from PhysioNet (https://physionet.org /phy-
siotools/matlab/wfdb/wfdb-app-matlab/).

Study endpoint

The primary endpoint was Glasgow Outcome Scale
(GOS) on the 14th day after ROSC. The good out-
come group included patients with a good recovery
(GOS 1) or moderate disability (GOS 2). The poor
outcome group included patients with severe disability
(GOS 3), a persistent vegetative state (GOS 4), or
death (GOS 5). The GOS level was prospectively
assessed by ICU physicians until death or hospital
discharge.

Statistical analyses
Categorical variables were presented as numbers or
percentage and compared using the chi-squared test
or Fisher’s exact test. Continuous variables were pre-
sented as median (interquartile range) and compared
using the Mann-Whitney U test. Univariate logistic
regression analysis for poor outcome was performed
on each HRV-related variable. Variables were included
in the multivariate logistic regression analysis if p =
0.001 (both Mann-Whitney U test and univariate lo-
gistic regression analysis). Results were presented as
odds ratios (OR) and 95% confidence intervals (CI).
The receiver operating characteristic (ROC) curve was
plotted, and the area under the curve (AUC) was calculated
to evaluate the predictive performance of HRV-related vari-
ables for poor outcome. Youden index was used to calcu-
late the optimal cut off value. Sensitivity and specificity
were determined for the selected cutoff value. In addition,
sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), and false-positive ratio (FPR)
for poor outcome were calculated by dichotomy of the
minimum values of the patients with good outcome.
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Two-sided p values <0.05 were considered statisti-
cally significant. All analyses were performed using
STATA/SE package version 15.0 (StataCorp, College
Station, TX, USA).

Results

Patient characteristics

After the exclusion of patients, a total of 77 patients
were recruited; however, one patient with replacement
rate >20% was excluded. Thus, 76 patients were en-
rolled and divided by GOS on the 14th day after

Page 4 of 9

ROSC into good outcome (n=22) or poor outcome
(n =54) groups (Fig. 1).

The median replacement rate of good or poor out-
come groups was 0.13% or 0.38%, respectively, with
no statistically significant difference (p =0.642).

Patient characteristics are shown in Table 1. There
was no significant difference in age, gender, Acute
Physiology and Chronic Health Evaluation (APACHE)
II score, and Sequential Organ Failure Assessment
(SOFA) Score (day 1) between good and poor out-
come groups.

(n=249)

Adlut patients after return of spontaneous circulation
(ROSC) admitted to intensive care unit
between January 1, 2015 and December 31, 2017

Excluded (n=73)

| Included 176 patients |

Excluded (n=48)

| Included 128 patients |

Excluded (n=51)

(n=25)

v

| Included 77 patients |

Excluded (n=1)

v

| Final Cohort (n=76) |

v

Judged outcome according to
Glasgow Outcome Scale
on the14th day after ROSC

K

Good Outcome Poor Outcome
(n=22) (n=54)

Fig. 1 Patient flow chart

« af or AF rhythm (n=15)

+ Cardiopulmonary arrest due to subarachnoid or intracerebral
hemorrhage (n=23 )

« Initial Glasgow Coma Scale motor score >1 (n=35)

+ Normothermic targeted temperature management (TTM)
was performed (n=48)

+ Hypothermic TTM was abandoned due to hemodyamic instability
+ New onset af rhythm (n=10)

+ 8-hour electrocardiogram (0:00-8:00 am) was not recorded
within the first 24 hours after ROSC (n=16)

+ non-sinus RR intervals >20% of entire RR intervals (n=1)
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Table 1 Comparison of patient characteristics and HRV-related variables between good and poor outcomes
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Patient characteristics /HRV-related variable Total (n =76) Good outcome (n=22) Poor outcome (n = 54) p

Age (years) 61 (46-76) 58 (49-72) 61 (45-77) 0.748
Gender (F/M) (n) 26/50 7/15 19/35 0.779
APACHE Il score 28 (26-31) 27 (26-29) 28 (27-32) 0.185
SOFA score, day 1 11 (8-13) 10 (7-11) 11 (8-14) 0.153
DC 1.83 (0.92-3.34) 269 (1.23-5.32) 1.64 (0.78-2.77) 0.037
AVNN (ms) 699 (605-827) 804 (698-842) 677 (574-788) 0.009
SDNN (ms) 409 (25.3-57.8) 476 (34.7-71.5) 35.5(23.8-554) 0.090
rMSSD (ms) 104 (4.9-19.8) 153 (64-24.4) 9.1 (42-17.0) 0.111
pNN50(%) 0.88 (0.16-3.76) 7 (0.16-3.76) 0.77 (0.16-3.47) 0518
Triangular index 73 (5.1-11.1) 9.8 (6.7-15.3) 6.6 (4.9-10.3) 0.018
Poincaré plot, SD1 (ms) 75 (35-14.8) 11.5 (4.5-19.7) 7.2 (3.1-129) 0.088
Poincaré plot, SD2 (ms) 4 (10.0-29.9) 31.0 (21.1-43.0) 13.3 (74-226) 0.001
In total power (ms?) 8.06 (7.15-8.80) 848 (7.77-9.46) 7.84 (7.03-8.70) 0.062
In ULF power (ms?) 7.83 (6.90-8.63) 8.06 (7.39-8.81) 7.72 (6.80-8.59) 0.140
In VLF power (ms?) 483 (3.73-5.98) 6.06 (5.49-7.12) 441 (3.14-5.22) 0.001
In LF power (ms?) 3.65 (1.72-4.59) 4.38 (3.54-5.30) 3.10 (1.36-4.33) 0.002
In HF power (ms?) 3.53 (239-4.72) 3.96 (2.71-5.08) 3.1 (1.99-4.67) 0.195
LF/HF 0.98 (0.52-2.04) 223 (1.10-3.72) 0.73 (0.40-1.42) 0.001
Power law (B) —145 (=174 10 —1.20) —136 (- 148 to —1.05) —1.56 (-1.80 to —1.31) 0.015
DFA (ay) 0.79 (0.64-0.98) 0.98 (0.87-1.22) 0.71 (0.60-0.86) 0.001
DFA (ay) 092 (0.77-1.12) 0 (0.88-1.29) 0.88 (0.71-1.01) 0.003
ApEn 0.55 (0.27-0.84) 0.59 (0.30-0.95) 0.51 (0.26-0.81) 0336
SampEn 037 (0.17-0.60) 0.38 (0.23-0.79) 0.36 (0.16-0.55) 0348
MSE index 8 (35-194) 19.0 (14.8-22.6) 83 (29-136) 0.001

All values are expressed as n or median (interquartile range)

Abbreviations: AVNN average of all RR intervals, APACHE Acute Physiology and Chronic Health Evaluation, ApEn approximate entropy, DC decelerating capacity, DFA
detrended fluctuation analysis, F female, HF high frequency, HRV heart rate variability, LF low frequency, LF/HF ratio of low- to high-frequency power, In natural
logarithm, M male, MSE multiscale entropy, Power law slope of the regression of power spectrum in log-log scale, pNN50 % of successive RR intervals differing >
50 ms, rtMSSD square root of the mean of the squares of differences between adjacent RR intervals, SampEn sample entropy, SDNN standard deviation of all RR
intervals, SD1 and SD2 standard deviations of short and long axis of Poincaré plot, SOFA Sequential Organ Failure Assessment, Triangular index total number of all
RR intervals divided by the height of the histogram of all RR intervals, ULF ultra-low frequency, VLF very-low frequency

Comparisons of HRV-related variables between poor and
good outcomes
Table 1 also shows comparisons of 20 HRV-related vari-
ables. There was a significant difference in DC (p =
0.037), AVNN (p =0.009), triangular index (p =0.018),
SD2 (p=0.001), In VLF power (p =0.001), In LF power
(p =0.002), LE/HF (p =0.001), power law (f5) (p =0.015),
DFA (a;) (p=0.001), DFA (&) (p=0.003), and MSE
index (p=0.001) between good and poor outcome
groups. The curves of the MSE of poor and good out-
come groups are shown in Additional file 1: Figure S1.
Table 2 shows OR and 95% CI of 20 HRV-related
variables for poor outcome by univariate logistic re-
gression analysis. Significant univariate variables for
poor outcome were DC (p =0.033), AVNN (p =0.012),
In total power (p=0.032), In VLF power (p=0.001),
In LF power (p=0.003), LE/HF (p=0.002), DFA (a;)

(p =0.001), DFA (ay) (p=0.003), and MSE index (p =
0.001).

Table 2 also shows OR and 95% CI of variables by multi-
variate logistic regression analysis of the 3 variables that
were statistically significant by both Mann-Whitney U test
and univariate logistic regression analysis (p =0.001). In
VLF power and DFA (a;) were significant predictors for
poor outcome (OR =0.436, p =0.006 and OR =0.709, p =
0.024, respectively).

Figure 2 shows a box-and-whisker plot, ROC curve,
AUC, and optimal cutoff value for the 5 HRV-related vari-
ables that were statistically significant by Mann-Whitney U
test (p =0.001). The AUC for In VLF power and DFA (al)
were 0.84 (95%CI=0.75-0.93) and 0.82 (95%CI = 0.72—
0.91), respectively. The combination of both variables
yielded a higher predictive performance (AUC=0.88,
95%CI = 0.80—0.95). The AUC, cutoff value, sensitivity, and
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Table 2 Univariate and multivariate logistic regression analyses
of HRV-related variables for prediction of poor outcome

HRV-related variable Odds ratio (95% Cl) z p

Univariate logistic regression analysis
DC 0.819 (0.681-0.984) -213 0.033
AVNN (ms) 0.995 (0.992-0.999) —252 0.012
SDNN (ms) 0.990 (0.977-1.003) -153 0.127
rMSSD (ms) 0.965 (0.929-1.003) -1.81 0.070
pNN50(%) 0.985 (0.924-1.051) —045 0654
Triangular index 0.915 (0.834-1.004) - 189 0.059
Poincaré plot, SD1 (ms) 0.982 (0.951-1.015) -1.06 0.288
Poincaré plot, SD2 (ms) 0.985 (0.968-1.001) —1.79 0.073
In total power (ms?) 0.626 (0.409-0.960) —2.15 0.032
In ULF power (ms?) 0.700 (0.469-1.043) -175 0.080
In VLF power (ms?) 0373 (0.224-0.620) —-3.80 0.001
In LF power (ms?) 0.598 (0.424-0.845) —-292 0.003
In HF power (ms?) 0.802 (0.593-1.084) - 144 0.151
LF/HF 0472 (0.304-0.733) —335 0.002
Power law (B) 0.278 (0.074-1.038) —1.90 0.057
DFA (ay) (per 0.1U) 0.635 (0.501-0.805) -376 0.001
DFA (a) (per 0.1 U) 0.702 (0.556-0.886) —298 0.003
ApEn (per 0.1 U) 0.930 (0.820-1.055) -1.13 0.260
SampEn (per 0.1U) 0911 (0.787-1.054) -125 0.211
MSE index 0.873 (0.811-0.941) —356 0.001

Multivariate logistic regression analysis
Ln VLF power 0436 (0.242-0.784) -277 0.006
DFA (a) (per 0.1 U) 0.709 (0.523-0.956) - 226 0.024
MSE index 0.983 (0.888-1.088) -033 0.739

Abbreviations: AVNN average of all RR intervals, ApEn approximate entropy, C/
confidence interval, DC decelerating capacity, DFA detrended fluctuation
analysis, HF high frequency, HRV heart rate variability, LF low frequency, LF/HF
ratio of low to high frequency power, In natural logarithm, MSE multiscale
entropy, Power law slope of the regression of power spectrum in log-log scale,
PNN50 % of successive RR intervals differing > 50 ms, rMSSD square root of the
mean of the squares of differences between adjacent RR intervals, SampEn
sample entropy, SDNN standard deviation of all RR intervals, SD1and SD2
standard deviations of short and long axis of Poincaré plot, Triangular index
total number of all RR intervals divided by the height of the histogram of all
RR intervals, ULF ultra-low frequency, VLF very-low frequency

specificity of each HRV-related variable are shown in Add-
itional file 1: Table S1.

Figure 3 shows scatter plots of good or poor outcome pa-
tients with corresponding values for In VLF power (x-axis)
and DFA (a;) (y-axis). The dotted lines indicate the min-
imal value of the patients with good outcome. In VLF
power <3.95 or DFA () <0.70 predicted poor outcome
with  sensitivity =61%, specificity = 100%, PPV =100%,
NPV =51%, and FPR = 0%.

Discussion
We conducted this prospective and exhaustive study to
identify early prognosticators among 20 HRV-related
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variables in post-ROSC comatose patients undergoing
hypothermic TTM. Consequently, In VLF power and
DFA (a;) were significant predictors of poor outcome
(OR=0.463, p=0.006, and OR=0.709, p=0.024, re-
spectively), with a predictive ability (AUC =0.84 and
0.82, respectively). In addition, the minimal value of In
VLF power or DFA (a;) for the patients with good out-
come could predict poor outcome with sensitivity = 61%
and specificity = 100% (Fig. 3), satisfying the requirements
for a robust predictor of poor outcome [6—8].

The physiological bases for ULF and VLF power are less
clear than LF and HF power. However, In VLF power has
been suggested to be a strong risk predictor in patients with
reduced left ventricular ejection fraction after acute myo-
cardial infarction [25], post aortic surgery [26], or multiple
organ dysfunction (MODF) [27]. DFA is a fractal correl-
ation characterized as free from external interference and
requiring non-stationarity. Perkiomaki et al. concluded that
a short-term fractal scaling exponent (a;) predicted fatal
cardiovascular events in various populations and might pro-
vide more prognostic information than traditional HRV in-
dexes [28]. For example, in a prospective, multicenter study
evaluating HRV as a predictor of death after acute myocar-
dial infarction, reduced a; (< 0.75) was the most powerful
predictor of mortality [29].

Mechanical ventilation or sedation significantly sup-
presses HRV. Kasaoka et al. showed that LF and HF power
and LE/HF per 5min were significantly higher when ICU
patients were breathing spontaneously after extubation
[30]. Bradley et al. showed that ICU patients with a low or
medium degree of MODF had a greater increase in HRV
during sedation interruption, compared with a high degree
of MODF [31]. Based on these findings, HRV may have
been depressed in our study. However, the depression
might be not so severe that differences between outcomes
would have been undetectable.

Although hypothermia causes bradycardia physiologic-
ally, time-domain variables or frequency-domain variable
of HRV during moderate hypothermia was enhanced in
patients with poikilothermia [32] or healthy volunteers
[33]. Tianien et al. reported that all HRV values based on
24-h RR intervals are higher in post-ROSC comatose pa-
tients treated with moderate hypothermia (33°C) than
those treated with normothermia (< 38 °C) [34]. In infants
with hypoxic ischemic encephalopathy, increased HF
power and AVNN during hypothermia were reported in
infants with moderate brain injury [35] or favorable out-
come [36] Thus, enhanced HRV produced by moderate
hypothermia may counter-act the suppressive effects of
mechanical ventilation with sedation in the present study.

Limitations
Several limitations might affect the present findings. First,
this study was conducted at a single institution with a small
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Fig. 2 Box-and-whisker plot, ROC curve, AUC, and cutoff value for the 5 HRV-related variables that were statistically significant by Mann-Whitney
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sample size. Thus, the cutoff values for HRV herein need to
be validated in other studies with a larger cohort. Second,
20% of patients treated with hypothermic TTM were ex-
cluded due to severe hypotension, which may limit the ap-
plicability of the data of this study. Third, the 8-h recording
time for RR intervals does not strictly adhere to the standard
recommendation for HRV measures [20]. Consequently,
long-term (24 h) HRV variables of SDNN, ULF power, and
triangular index may become unreliable. Finally, not all pa-
tients had reached the targeted bladder temperature of
34.°C at the beginning of recording of RR intervals because
the recording was scheduled to start at midnight within 24
h after ROSC.

Conclusions

The present data indicate that HRV analysis could be useful
for early prognostication for comatose patients during
hypothermic TTM within 24h after ROSC. The value of
HRYV as a prognosticator of poor outcome should be con-
firmed in a larger study.
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