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Abstract

Background: Patients with acute hypoxemic respiratory failure are at risk for life-threatening complications during
endotracheal intubation. Preoxygenation might help reduce the risk of hypoxemia and intubation-related
complications. This network meta-analysis summarizes the efficacy and safety of preoxygenation methods in adult
patients with acute hypoxemic respiratory failure.

Methods: We searched PubMed, EMBASE, and the Cochrane Library Central Register of Controlled Trials through
April 2019 for randomized controlled trials (RCT) that studied the use of conventional oxygen therapy (COT), high-
flow nasal cannula (HFNC), noninvasive ventilation (NIV), and HFNC and NIV as preoxygenation before intubation in
patients with acute hypoxemic respiratory failure. Citations’ screening, study selection, data extraction, and risk of
bias assessment were independently performed by two authors. The primary outcome was the lowest SpO2 during
the intubation procedure.

Results: We included 7 RCTs (959 patients). Patients preoxygenated with NIV had significantly less desaturation
than patients treated with COT (mean difference, MD 5.53, 95% CI 2.71, 8.34) and HFNC (MD 3.58, 95% CI 0.59, 6.57).
Both NIV (odds ratio, OR 0.43, 95% CI 0.21, 0.87) and HFNC (OR 0.49, 95% CI 0.28, 0.88) resulted in a lower risk of
intubation-related complications than COT. There were no significant mortality differences among the use of NIV,
HFNC, COT, and HFNC and NIV during preoxygenation.

Conclusions: In adult patients with acute hypoxemic respiratory failure, NIV is a safe and probably the most
effective preoxygenation method.
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Background
Patients with acute hypoxemic respiratory failure are at in-
creased risk for life-threatening complications during
endotracheal intubation. Profound desaturation (SpO2 <
80%) during intubation was reported in 25% of patients
[1]. Cardiac arrest occurred in 1 out of 40 intubations, and
it was associated with hypoxemia and absence of preoxy-
genation [2]. Preoxygenation might help reduce the risk of
hypoxemia and intubation-related complications.

Apart from conventional oxygen therapy (COT) delivered
through bag-valve mask or face mask, noninvasive ventila-
tion (NIV) and high-flow nasal cannula (HFNC) have been
increasingly used in the intensive care units (ICU) as preox-
ygenation devices. Both HFNC [3–5] and NIV [6, 7] have
been shown to offer better preoxygenation than COT. The
recently published FLORALI-2 study comparing HFNC
and NIV has added new insight to this battlefield [8].
Network meta-analysis (NMA) has been increasingly ad-

vocated in medical research [9]. Through a combination
of direct and indirect estimates of effects, NMA allows
comparison of multiple interventions and improved preci-
sion. The aim of this NMA is to evaluate the impact of
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preoxygenation, which includes desaturation during intub-
ation, intubated-related complications, and mortality, by
various devices including COT, HFNC, and NIV, in adults
with acute hypoxemic respiratory failure.

Methods
We adhered to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses extension state-
ment for reporting network meta-analyses (PRISMA-
NMA) (Additional file 1) [10]. The protocol for this re-
view was registered in the International Prospective Regis-
ter of Systematic Reviews (CRD42018085866).

Data sources and searches
We searched PubMed, EMBASE, and the Cochrane Library
Central Register of Controlled Trials through April 2019
for potentially relevant studies published in English. Our
PubMed search strategy is presented in Additional file 2:
Table S1. Reference lists of relevant articles were also
reviewed. We included randomized controlled trials (RCT)
of adult patients with acute hypoxemic respiratory failure

investigating any form of preoxygenation devices during
endotracheal intubation. Acute hypoxemic respiratory fail-
ure was defined by the individual authors in the included
studies. Preoxygenation devices included COT via bag-valve
mask or face mask, HFNC, or NIV. We defined preoxygena-
tion as oxygen delivery during the period before induction
of anesthesia, till initiation of laryngoscopy. Apneic oxygen-
ation was defined as oxygen delivery to the nasopharynx
during the time between initiation of laryngoscopy to the in-
tubation of the trachea (Additional file 2: Figure S1). We ex-
cluded studies focusing only on apneic oxygenation. The
following were excluded: studies evaluating only the dur-
ation of preoxygenation, decision on ventilation or preoxy-
genation during anesthesia or interventional procedures, or
enrolling healthy volunteers or animals.

Study selection and data extraction
Two authors (KF and SA) independently screened citations
and abstracts in duplicate and independently. All references
judged potentially relevant were evaluated for full-text eligi-
bility. Discrepancies were solved by consensus with the

Fig. 1 PRISMA flow diagram of the search results
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third author (GN). When relevant data or information was
missing, we attempted to contact authors of the studies.

Outcome measures
The primary outcome was the lowest SpO2 during the in-
tubation procedure (from beginning of laryngoscopy to
confirmation of endotracheal intubation by capnography).
The secondary outcomes were proportion of patients with
severe desaturation (SpO2 < 80%), intubation-related com-
plications (aspiration or new infiltrate on post-intubation
chest radiograph, hemodynamic instability, and cardiac ar-
rest), and mortality.

Risk of bias assessment
Two authors (SA and GN) independently assessed the
risk of bias of included studies. We assessed the risk
of bias of RCTs using the revised Cochrane risk-of-
bias tool for randomized trials [11]. In case of dis-
agreement for the attribution of risk of bias, it was
solved by discussion and consensus with the third au-
thor (KF).

Statistical analysis and quality of evidence
We performed a random effect network meta-analysis
using a frequentist framework, calculating mean differences
(MD) for continuous outcomes and odds ratios (OR) for di-
chotomous outcomes. Where data were not available, we
converted the median and interquartile range to mean and
standard deviations using a published equation [12].
We used the package “netmeta” (version 1.0-1) in R

(version 3.4.2, The R Foundation for Statistical Comput-
ing) to perform network meta-analysis [13]. The “net-
meta” package is based on an approach that follows the
graph-theoretical methodology. We ranked the

treatment using the P-score which are based on the fre-
quentist point estimates and their standard errors [14].
It represented the extent of certainty that a treatment is
better than the other treatments—the P-score would be
close to 1 when a treatment is certain to be the best and
close to 0 when a treatment was certain to be the worst.
Precision of the ranking is also taken into account by
looking at confidence intervals. Homogeneity and
consistency assumptions were checked using a general-
ized Cochrane’s Q statistics for multivariate meta-ana-
lysis [15]. Inconsistency in the random effect model was
assessed by between-study Q statistic that was calculated
based on design-by-treatment interaction model [16].
Sensitivity analysis was conducted by sequentially omit-
ting one study each time.
We applied the modified Grading of Recommenda-

tions Assessment, Development and Evaluation
(GRADE) approach for network meta-analysis [17,
18]. The contribution of all direct estimates to the
network estimates was evaluated from the contribu-
tion matrix [19]. We would rate down the quality of
evidence when intransitivity was present, or when
there was incoherence between direct and indirect es-
timates. When both direct and indirect evidence were
available, we chose the higher of the two quality rat-
ings for the NMA estimate [17].

Results
Literature search
The initial search yielded 909 citations; 13 proved poten-
tially eligible after reviewing the full-text articles. Seven
studies met our inclusion criteria, representing 959 pa-
tients (Fig. 1).

Fig. 2 Risk of bias of included studies
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Study characteristics
Of the 7 eligible trials, 3 compared HFNC with COT;
2, NIV with COT; 1, NIV with HFNC; and 1, HFNC
and NIV with NIV (Table 1). Trial sample size ranged
from 40 to 313 patients. Results of the individual
studies could be found in Additional file 2: Tables
S2–S3.

Risk of bias
The risk of bias was high in 1 trial, low in 3 trials, and
with some concerns in 3 trials (Fig. 2).

Quality of evidence
Direct comparisons often suffered from imprecision
and limitations of risk of bias. There were no signifi-
cant concerns regarding intransitivity. There was no
significant incoherence detected by statistical testing
nor visual inspection of direct and indirect estimates
(Table 2).

Clinical outcomes
Lowest SpO2 during intubation
Seven trials (959 patients) reported the lowest SpO2 dur-
ing intubation (Additional file 2: Table S2). The network
geometry was shown in Additional file 2: Figure S2. The
network estimate provided high-to-moderate quality evi-
dence (Table 2). Patients preoxygenated with NIV had
significantly less desaturation than patients treated with
COT (network estimate, MD 5.53, 95% CI 2.71, 8.34)
and HFNC (network estimate, MD 3.58, 95% CI 0.59,
6.57) (Fig. 3). Although HFNC and NIV was ranked to
be the best treatment (Table 3), there was no evidence
that HFNC and NIV was superior than NIV (direct esti-
mate, MD − 3.10, 95% CI − 11.18, 4.98), and thus, the re-
sult should be interpreted with caution. NIV ranked the
2nd among the four methods. The heterogeneity and
consistency were low (I2 = 23.6%; Q statistics total: p =
0.264, within design: p = 0.162, between designs: p =
0.750).

Fig. 3 Forest plot of lowest SpO2 during intubation. I2 = 23.6%. Q-statistics for heterogeneity (within designs) and inconsistency (between
designs). Total: p = 0.264, within designs: p = 0.162, between designs: p = 0.750. COT, conventional oxygen therapy (bag-valve mask or facial mask);
HFNC, high-flow nasal cannula; NIV, noninvasive ventilation; MD, mean difference; NMA, network meta-analysis

Table 3 The P-score statistics

HFNC and NIV NIV HFNC COT

Lowest SpO2 during
intubation

0.895 0.739 0.336 0.030

SpO2 < 80% during
intubation

0.957 0.634 0.344 0.066

Intubation-related
complications

0.560 0.774 0.595 0.071

Mortality 0.689 0.556 0.598 0.157

P-scores represent the extent of certainty that a treatment is better than the
other treatments—the P-score would be close to 1 when a treatment is
certain to be the best and close to 0 when a treatment is certain to be
the worst
COT conventional oxygen therapy (bag-valve mask or facial mask), HFNC high-
flow nasal cannula, NIV noninvasive ventilation, MD mean difference, OR odds
ratio, NMA network meta-analysis
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SpO2 < 80% during intubation
Seven trials (959 patients) reported the incidence of
SpO2 < 80% during intubation (Additional file 2: Table
S2). The network estimate provided moderate-quality
evidence (Table 2). Significant desaturation with SpO2 <
80% was less common in patients preoxygenated with
NIV than that with COT (network estimate OR 0.43,
95%CI 0.19, 0.97) (Fig. 4). The combined use of HFNC
and NIV was ranked to be the best preoxygenation
method. However, the confidence interval of its treat-
ment effect estimates was very wide because of the small
sample size (direct estimate OR 0.16, 95% CI 0.01, 1.80).
NIV ranked the 2nd among the four preoxygenation
methods (Table 3).

Intubation-related complications
Seven trials (959 patients) reported the intubation-re-
lated complications) (Additional file 2: Table S3). The
network estimate ranged from high- to low-quality evi-
dence (Table 2). Both NIV (network estimate OR 0.43,
95% CI 0.21, 0.87) and HFNC (network estimate OR
0.49, 95% CI 0.28, 0.88) resulted in a lower risk of intub-
ation-related complications than COT (Fig. 5). NIV
ranked the 1st and HFNC 2nd among the four preoxy-
genation methods (Table 3).

Mortality
Six trials (919 patients) reported the mortality (Add-
itional file 2: Table S2). The network estimate ranged
from high- to low-quality evidence (Table 2): There was
no evidence showing the superiority of one particular
preoxygenation method as determined by the confidence
interval (Fig. 6). Thus, the ranking by P-scores should be
interpreted with caution (Table 3).

Sensitivity analysis
We performed sensitivity analysis by excluding the study
by Guitton et al. [5] as subjects with mild hypoxemia
were included, compared with the other included studies
which recruited subjects with moderate to severe re-
spiratory failure. Results of direct, indirect, and network
estimates were similar (Additional file 2: Figures S3–S6).
There was no change in ranking based on P-scores
(Additional file 2: Table S5).

Discussion
In this network meta-analysis, we included 7 RCTs en-
rolling 959 patients comparing three preoxygenation
methods—COT, HFNC, and NIV. Hypoxemic patients
treated with NIV during intubation desaturated less (as
reflected by absolute difference of lowest SpO2 and inci-
dence of SpO2 < 80%) than those patients treated with

Fig. 4 Forest plot of SpO2 < 80% during intubation. I2 = 48%. Q-statistics for heterogeneity (within designs) and inconsistency (between designs).
Total: p = 0.104, within designs: p = 0.072, between designs: p = 0.409. COT, conventional oxygen therapy (bag-valve mask or facial mask); HFNC,
high-flow nasal cannula; NIV, noninvasive ventilation; OR, odds ratio; NMA, network meta-analysis
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HFNC or COT (moderate quality of evidence). The risk of
intubation-related complications (aspiration or new infil-
trate on postintubation chest radiograph, hemodynamic
instability, and cardiac arrest) was lower with NIV than
with any other preoxygenation methods (moderate quality
of evidence). Among the methods of preoxygenation ex-
amined, it seems that combined use of HFNC and NIV is
the most effective in minimizing the drop in SpO2 and the
incidence of SpO2 < 80% during intubation. However, this
determination is limited to data from only one single-cen-
ter study in which no head-to-head comparisons were
performed against all other methods.
HFNC has several physiological advantages, including

its ability to deliver high-flow oxygen, generation of low
level of PEEP, and allowing apneic oxygenation [21].
Despite the clear benefit of HFNC in patients with acute
hypoxemic respiratory failure and after planned extuba-
tion [22, 23], the evidence for HFNC in preoxygenation
remains conflicting. The single-center before-after study
by Miguel-Montanes et al. [24] has excluded patients
with severe hypoxemia. Its positive results have not been
reproducible in the subsequent trials by Vourc’h et al.
[3] and Simon et al. [4] which recruited patients with se-
vere hypoxemia and patients with mild-moderate hypox-
emia respectively. While Guitton et al. [5] have shown a

reduction in intubation-related adverse events with the use
of HFNC in non-severely hypoxemic patient, it was not ac-
companied by an improvement in the lowest SpO2. The ef-
fectiveness of HFNC is undermined by the loss of PEEP
effect due to mouth opening in patients in respiratory dis-
tress [25]. These patients can have a dramatic increase in
inspiratory nasal and oral flow rate of up to 110 L/min and
280 L/min respectively, and that could not be matched by
the HFNC [26]. Another possible explanation is that apneic
oxygenation requires a continuous oxygen extraction from
the functional residual capacity (FRC) during the apnea
period, thus generating a pressure gradient to allow oxygen
flow from the nose into the alveoli. These mechanisms are
hindered by the reduction of FRC and shunt physiology in
diseased lungs [27]. Airflow may also be limited by the use
of cricoid pressure possibly obstructing the space between
the oropharynx and trachea [28].
NIV allows the delivery of high level of FiO2 and posi-

tive intrathoracic pressure, encouraging alveolar recruit-
ment which could possibly improve the efficiency of
gaseous exchange. It has also been shown to counteract
inward air leaks and improve face-mask seal [29]. The
theoretical risk of gastric distention and aspiration re-
mains unproven based on our analysis. Although the
mask must be removed during laryngoscopy, patients

Fig. 5 Forest plot of intubation-related complications. I2 = 0%. Q-statistics for heterogeneity (within designs) and inconsistency (between designs).
Total: p = 0.978, within designs: p = 0.914, between designs: p = 0.892. Intubation-related complications were defined as aspiration or new infiltrate
on post-intubation chest radiograph, hemodynamic instability, and cardiac arrest. COT, conventional oxygen therapy (bag-valve mask or facial
mask); HFNC, high-flow nasal cannula; NIV, noninvasive ventilation; OR, odds ratio; NMA, network meta-analysis
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preoxygenated with NIV still desaturated less during in-
tubation than patients preoxygenated with other modal-
ities. The authors thus recommend the use of NIV for
preoxygenation in patients with acute hypoxemic re-
spiratory failure.
The next question would be whether the addition of

HFNC to NIV could produce extra benefit during preox-
ygenation. The pilot study by Jaber et al. [20] published
in 2016 showed promising results. However, one must
be cautious in the interpretation of the findings in the
use of HFNC and NIV, in view of the small sample size
that tends to overestimate the treatment effect and the
possibility of publication bias. Additionally, the optimal
way to minimize air leak with concomitant use of HFNC
and NIV has not been well-delineated. It would be interest-
ing to consider whether nasal continuous positive airway
pressure mask could play a special role in preoxygenation.
Visualization of glottic view by laryngoscopy may be feas-
ible with the nasal mask in situ, maintaining oxygenation
during intubation.
Another practical but unaddressed consideration

would be the oxygen device used prior to the decision of
intubation. Based on the mortality difference shown in
FLORALI-1 trial, it would not be surprising to see a
surge in the use of HFNC in patients with acute hypox-
emic respiratory failure. A more recent systematic review

also confirmed a reduced risk of requiring intubation
with the use of HFNC compared with COT [22]. All
existing studies placed no restriction in the patient en-
rollment based on the oxygen devices they used prior to
inclusion and the number of patients on advanced oxy-
gen device varied across studies (Additional file 2: Table
S4). As shown in the study by Baillard et al. [7], there
was an increased risk of adverse events including severe
desaturation with SpO2 < 80% in patients initially put on
NIV, who were then randomized to receive COT during
preoxygenation. It would be uncertain whether the low-
ered complication risks during preoxygenation with NIV
was in fact a reflection of a higher risk of complication
in patients “de-escalated” from a more advanced oxygen
support (NIV) to a simpler device (COT). Additionally,
whether the advantage of oxygenation in NIV would be
less evident in patients who were already put on NIV or
HFNC remained unclear.
The study is the first systematic review using network

meta-analysis to evaluate preoxygenation methods in pa-
tients with acute hypoxemic respiratory failure. NMA al-
lows the comparison of multiple preoxygenation methods
and increases the precision by combining direct and indir-
ect estimates. Other strengths of this study included the
comprehensive search, duplicate and independent citation
screening and data abstraction, use of the latest modified

Fig. 6 Forest plot of mortality. I2 = 0%. Q-statistics for heterogeneity (within designs) and inconsistency (between designs). Total: p = 0.533, within
designs: p = 0.545, between designs: p = 0.322. COT, conventional oxygen therapy (bag-valve mask or facial mask); HFNC, high-flow nasal cannula;
NIV, noninvasive ventilation; OR, odds ratio; NMA, network meta-analysis
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Cochrane risk of bias assessment tool, and the adherence
to the PRISMA-NMA guideline.
This study had some limitations. Despite an extensive

literature search, the number of trials for each compari-
son of preoxygenation methods remained small. Funnel
plot was not constructed because of the limited number
of studies, so it is not possible to estimate possible pub-
lication bias. While pulse oximetry was frequently used as
the outcome measure in clinical trials studying preoxy-
genation, it is, however, not the best surrogate to reflect
systematic oxygenation [30]. Arterial oxygen saturation or
end-tidal oxygen is more relevant to assess the adequacy
of preoxygenation, but they may not be readily available in
case of clinical emergency settings.

Conclusions
In adult patients with acute hypoxemic respiratory failure,
NIV is a safe and probably the most effective preoxygena-
tion method. Further research should be performed to
evaluate the benefits of the combination strategy of NIV
plus HFNC.
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