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Abstract

Background: Perioperative goal-directed therapy (GDT) reduces the risk of renal injury. However, several questions
remain unanswered, such as target, kind of patients and surgery, and role of fluids and inotropes. We therefore
update a previous analysis, including all studies published in the meanwhile, to clarify the clinical impact of this
strategy on acute kidney injury.

Main body: Randomized controlled trials enrolling adult patients undergoing major surgery were considered. GDT
was defined as perioperative monitoring and manipulation of hemodynamic parameters to reach normal or
supranormal values by fluids alone or with inotropes. Trials comparing the effects of GDT and standard
hemodynamic therapy were considered. Primary outcome was acute kidney injury, whichever definition was
used. Meta-analytic techniques (analysis software RevMan, version 5.3) were used to combine studies, using
random-effect odds ratios (OR) and 95% confidence intervals (CI). Trial sequential analyses were performed
including all trials and considering only low risk of bias trials. Sixty-five trials with an overall sample of 9308
patients were included. OR for the development of renal injury was 0.64 (95% CI, 0.62–0.87; p = 0.0003), with
no statistical heterogeneity. Trial sequential analyses and sensitivity analysis including studies with low risk
of bias confirmed the main results. A significant decrease in renal injury rate was observed in studies that
adopted cardiac output and oxygen delivery as hemodynamic target and that used both fluids and inotropes.
The postoperative kidney injury rate was significantly lower in trials enrolling “high-risk” patients and major
abdominal and orthopedic surgery.

Short conclusion: The present meta-analysis suggests that targeting GDT to perioperative systemic oxygen
delivery, by means of fluids and inotropes, can be the best way to improve renal perfusion and oxygenation
in high-risk patients undergoing major abdominal and orthopedic surgery.

Keywords: Postoperative acute renal injury, Perioperative hemodynamic optimization, High-risk patients, Fluid
therapy, Oxygen delivery, Cardiac output

Background
Acute kidney injury (AKI) is an abrupt decrease of renal
function, encompassing various etiologies, from pre-
renal azotemia to acute tubular necrosis and post-renal
obstructive disease. More than one condition may coex-
ist in the same patient, making a uniform definition still
a challenge. Recently, a single definition was proposed to
be useful for practice and research (i.e., an increase of

serum creatinine of 1.5 to 1.9 times baseline or > 0.3
mg/dl, or urine output < 0.5 ml/kg/h for 6 to 12 h [1].
AKI is a well-known complication following surgical

procedures [2], independently associated with increased
hospital mortality and doubling of hospital costs [3, 4].
Therefore, the prevention of this postoperative compli-
cation is of paramount importance.
Perioperative monitoring and manipulation of physio-

logic hemodynamic parameters to reach adequate car-
diac output (CO) and oxygen delivery (DO2) (GDT) may
decrease the risk of postoperative renal injury [5]. This
finding has been confirmed by a subsequent systematic

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: mariateresagiglio@gmail.com
Anesthesia and Intensive Care Unit, Department of Emergency and Organ
Transplantation, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy

Giglio et al. Critical Care          (2019) 23:232 
https://doi.org/10.1186/s13054-019-2516-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-019-2516-4&domain=pdf
http://orcid.org/0000-0002-4901-0045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mariateresagiglio@gmail.com


review [6], and in a recent international, web-enabled
consensus conference [7], GDT resulted in the strongest
recommendation proposed to reduce mortality in pa-
tients with or at risk for AKI. Similarly, recent guidelines
suggest GDT to prevent the development or worsening
of AKI in a perioperative setting (strength of recommen-
dation 2C) [1]. However, interventions to optimize
hemodynamics are heterogeneous in targets, timing, de-
sign, and technology. Several questions remain un-
answered, such as targets, treatment strategies—
including the role of fluids and inotropes—and kind of
patients and surgeries that can benefit from this ap-
proach. In order to clarify these issues, an up-to-date
systematic review with meta-analysis and trial sequential
analysis (TSA) has been performed.

Main body
Materials and methods
Eligibility criteria
Studies were searched according to the following eligibil-
ity criteria [8]:

Types of participants Adult (age 18 years or over) pa-
tients undergoing major surgery were considered. Stud-
ies involving mixed population of critically ill, non-
surgical patients, or postoperative patients with already
established sepsis or organ failure were excluded.

Type of intervention GDT was defined as perioperative
monitoring and manipulation of hemodynamic parame-
ters to reach normal or supranormal values by fluids
alone or in combination with inotropic therapy, within
8 h after surgery. Studies including late hemodynamic
optimization treatment were excluded.

Type of comparison Randomized controlled trials
(RCTs) comparing the beneficial and harmful effects of
GDT and standard hemodynamic therapy were consid-
ered. Standard hemodynamic management was defined
as anesthesiologists’ routine administration of fluids
and/or inotropic drugs in order to achieve hemodynamic
stability, but not aimed to reach physiologic flow-related
end-points and not guided by appropriate monitoring.
RCTs with no description or no difference in
optimization strategy between groups and RCTs with
therapy titrated to the same goal in both groups or not
titrated to predefined endpoints were excluded.

Type of outcome measures Primary outcome measure
was AKI, whichever definition was adopted. A sensi-
tivity analysis was planned, according to the risk of
bias of included studies (i.e., RCTs with 5 or 6 green
plus, see below). A TSA was performed including all

RCTs and low risk of bias trials, to adjust for random
error risk.
Several subgroup analyses were planned for the main

outcome according to:

� Target. Studies were defined according to the
target used in the GDT protocol (indices of pre-
load responsiveness, CO or DO2, or other
indirect indices of DO2, such as lactate and
venous saturation).

� Treatment. The subset analysis included studies that
used fluids alone to optimize hemodynamic status.
The other subgroup included studies that used both
fluids and inotropes. Moreover, we planned a
subgroup analysis including only those RCTs that
showed a statistical difference between treatment
and control group during the perioperative period in
the total amount of starch-based solutions (HES)
administered.

� Risk. Studies were split into 2 different subgroups,
according to the risk of perioperative morbidity/
mortality. Low risk was defined as elective surgery in
young, ASA I-II patients. Definition of high risk was
based on the need of emergent surgery, and/or
elective major surgery in patients with risk criteria
defined by perioperative scoring system [9], ASA
physical status classification (i.e., ASA III–IV), age >
60 years, and preoperative morbidity.

� Surgery. Studies were divided according to the kind
of surgery (i.e., major abdominal, trauma, vascular,
cardiac, thoracic, orthopedic).

Types of studies Randomized controlled trials studying
perioperative GDT. No language, publication date, or
status restrictions were imposed.

Information sources
Different search strategies (last update September 2018)
were performed to retrieve relevant studies using MED-
LINE, The Cochrane Library, and EMBASE databases.
No date restriction was applied for MEDLINE and The
Cochrane Library databases, while the search was lim-
ited to 2007–2018 for EMBASE database [10]. Add-
itional RCTs were searched in The Cochrane Library
and in the DARE databases and the reference lists of
previously published reviews and retrieved articles, and
other data sources were hand-searched in the annual
proceedings (2003–2018) of the Society of Critical Care
Medicine, the European Society of Intensive Care Medi-
cine, the Society of Cardiovascular Anesthesiologists, the
Royal College of Anaesthetists, and the American Soci-
ety of Anesthesiologists.
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Search
The search strategies used for MEDLINE, The Cochrane
Library, and EMBASE databases are reported in Add-
itional file 1.

Study selection
Two investigators (MG, NB) examined at first each title
and abstract to exclude clearly irrelevant studies and to
identify potentially relevant articles. Other two investiga-
tors (FP, LD) independently determined the eligibility of
full-text articles retrieved. The names of the author, in-
stitution, journal of publication, and results were un-
known to the two investigators at this time.

Data collection process
Data were independently collected by two investigators
(MG, FP) with any discrepancy resolved by re-inspection
of the original article. To avoid transcription errors, the
data were input into statistical software and rechecked
by different investigators (NB, LD).

Data items
Data abstraction included patients’ characteristics (age,
sex), risk factors, type of hemodynamic GDT (monitor-
ing tools, end-points, therapeutic interventions), type of
surgery, incidence (patients who developed postoperative
AKI), and definition of postoperative AKI.

Risk of bias in individual studies
A domain-based evaluation, as proposed by the
Cochrane Collaboration, was used to evaluate the meth-
odological quality of RCTs [11]. This is a two-part tool,
addressing seven specific domains (namely, sequence
generation, allocation concealment, blinding of partici-
pants and personnel, blinding of outcome assessment,
incomplete outcome data, selective outcome reporting,
and “other issues”) strongly associated with bias reduc-
tion [12, 13]. With regard to blinding, studies in which
outcome variables were collected by investigators not
aware of the intra-operative strategy, as well as studies
in which postoperative renal injury was clearly pre-
defined, were considered adequately masked.
Each domain in the tool includes one or more specific

entries in a “risk of bias” table. Within each entry, the
first part of the tool describes what was reported to have
happened in the study, in sufficient detail to support a
judgment about the risk of bias. The second part of the
tool assigns a judgment relating to the risk of bias for
that entry. This is achieved by assigning a judgment of
“low risk,” “high risk,” or “unclear risk” of bias. After
each domain is completed, a “risk of bias summary” fig-
ure presenting all of the judgments in a cross-tabulation
of study by entry is generated. The green plus indicates
a low risk of bias, the red minus indicates a high risk of

bias, and the white color indicates an unclear risk of
bias. For each study, the number of green plus obtained
for every domain was calculated: RCTs with 5 or 6 green
plus were considered as low risk of bias studies.

Summary measures and planned method of analysis
Meta-analytic techniques (analysis software RevMan,
version 5.3 Cochrane Collaboration, Oxford, England,
UK) were used to combine studies using odds ratios
(OR) and 95% confidence intervals (CI). A statistical dif-
ference between groups was considered to occur if the
pooled 95% CI did not include 1 for the OR. An OR less
than 1 favored GDT when compared with the control
group. Two-sided p values were calculated. A random-
effects model was chosen for all analyses. Statistical het-
erogeneity and inconsistency were assessed by using the
Q and I2 tests, respectively [14, 15]. When the p value of
the Q test was < 0.10 and/or the I2 was > 40%, hetero-
geneity and inconsistency were considered significant
[16]. When significant heterogeneity and inconsistency
were found, the most heterogeneous study on the basis
of the forest plot was removed and the analysis was re-
done. Two TSA were performed including all trials and
only low risk of bias RCTs. The information size and
monitoring boundary were calculated anticipating a 2%
relative risk reduction in postoperative AKI with GDT.
We set risk of type I at 5% and power at 95%.

Results
Study selection
The search strategies identified 3304 (MEDLINE), 9992
(Cochrane Library), and 3492 (EMBASE) articles. Fifteen
articles were identified through other sources (congress
abstracts, reference lists). After initial screening and sub-
sequent selection, a pool of 126 potentially relevant
RCTs was identified. The subsequent eligibility process
(Additional file 2: Figure S1) excluded 61 articles and,
therefore, 65 [17–81] RCTs with a total sample of 9308
patients were considered for the analysis.

Study characteristics
All included articles evaluated the effects of
hemodynamic GDT on morbidity (including AKI) as pri-
mary or secondary outcome and had a population sam-
ple of adult surgical patients, undergoing both elective
and emergent procedures (Additional file 7: Table S1).
The studies were performed in Australia, USA, Europe,
Canada, Brazil, China, Africa, and India from 1991 to
2018 and were all published in English.
Data concerning morbidity/mortality risk definition,

population, type of surgery, monitoring tools, and tar-
gets are presented in Additional file 7: Table S1. The
risk of bias assessment for each trial is showed in
Additional file 8: Table S2. Out of 65 studies, 29
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Fig. 1 Forest plot for postoperative acute kidney injury (AKI) (defined as the proportion of patients who developed postoperative worsening of
renal function, whichever definition was used). Size of squares for odds ratio reflects weight of trial in pooled analyses. Horizontal bars represent
95% confidence intervals
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Fig. 2 (See legend on next page.)
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enrolled “high-risk” patients. In 26 studies, the treat-
ment group received only fluids (crystalloids, gelofu-
sine, HES) and/or blood, while in 39 studies,
optimization was obtained both with fluids (crystal-
loids and/or colloids and/or blood) and inotropes
(dopamine, dobutamine, dopexamine, or epinephrine)
with vasodilators. In one study [74], either dopexa-
mine or epinephrine was administered in the treat-
ment group; both groups were pooled together for
the purpose of the analysis. In one study [42], one
treatment group received dopamine not targeted to
hemodynamic end-point, and therefore, this group
was not considered for the purpose of the analysis.

Quantitative data synthesis
Among the 9308 patients randomized in the 65 included
studies, 741 developed AKI. Of these, 421 had been ran-
domized to control group (9.01%) and 320 (6.84%) to
GDT. The pooled OR and 95% CI for the development
of AKI were 0.64, 95% CI 0.62–0.87; p = 0.0003 (Fig. 1).
No statistical heterogeneity was detected.
TSA confirmed the main result: the cumulative z

curve crosses the O’Brien-Fleming boundaries, and the
meta-analysis can be declared as conclusive with regard
to the effect of GDT on AKI (Additional file 3: Figure
S2). The sensitivity analyses, including only low risk of
bias RCTs, confirmed the main analysis, with an OR
0.81, 95% CI 0.6–0.97 (Fig. 2). TSA considering only low
risk of bias RCTs shows the same conclusion: the cumu-
lative z curve crossed the O’Brien-Fleming boundaries,
indicating firm evidence that GDT reduces postoperative
AKI (Additional file 4: Figure S3).
The subset analysis including studies using CO or

DO2 as hemodynamic target showed a significant reduc-
tion in AKI (OR 0.64, 95% CI 0.62 to 0.89, p = 0.001),
while OR of studies that used preload indices or indirect
indices as lactate did not reach statistical significance
(Fig. 3).
Subgroup analysis showed that fluid administration

alone did not reduce AKI, while a significant decrease in
AKI rate was observed in patients receiving both fluids
and inotropes (OR 0.73 95% CI 0.60 to 0.89, p = 0.001)
(Fig. 4). The subgroup analysis including RCTs that re-
ported a statistical difference between treatment and
control group in total amount of HES given during the
perioperative period showed no difference in postopera-
tive AKI (OR 0.85 95% CI 0.64 to 1.12, p = 0.24; I2 0%,
33 RCTs, 3871 patients) (Additional file 5: Figure S4).

Postoperative AKI rate was significantly lower in studies
enrolling “high-risk” patients (OR, 0.72; 95% CI 0.59 to
0.87, p = 0.0008); in low-risk patients, no difference in
AKI was observed (Fig. 5).
Subgroup analyses based on the kind of surgery

yielded significant differences in AKI between treatment
and control groups for patients undergoing major ab-
dominal and orthopedic surgery (OR 0.78; 95% CI 0.63–
0.96, p = 0.03, and OR 0.51; 95% CI 0.27–0.96, p = 0.04,
respectively), while no difference was observed in other
types of surgical procedures (Additional file 6: Figure S5)
. Excluding the heaviest trial [63] did not significantly
change main and subgroup analyses, while the sensitivity
analysis, including only low risk of bias RCTs, yielded a
not significant reduction in AKI.

Discussion
The present meta-analysis demonstrates that the inci-
dence of postoperative AKI is reduced by GDT: this sig-
nificant reduction was confirmed in the sensitivity
analysis enrolling only low risk of bias trials. TSA, per-
formed to unmask false-positive results [82], confirms
the robustness of the data, since the number of patients
enrolled (9308 patients) is very near to the required in-
formation size (9668 patients) to reach a definite conclu-
sion. In order to reduce AKI incidence, a strategy that is
guided by CO and DO2 should be adopted, using both
fluids and inotropes. Patients who more benefit from
this approach are high-risk patients undergoing abdom-
inal or orthopedic surgery.
The role of kidney hypoperfusion and hypoxia has

been recently underlined as a key pathogenetic event
promoting postoperative AKI [83]. Tissue hypoxia trig-
gers a vicious cycle of inflammation, peritubular capillary
narrowing, impaired renal autoregulation, oxidative
stress, apoptosis, and necrosis [84]. Protection against
hypoperfusion mainly relies on maintaining adequate
intravascular volume and organ perfusion pressure. Sev-
eral evidence confirm this approach, and a very recent
trial [85] suggests that an “individualized” blood pressure
control, with a protocolized hemodynamic algorithm to
guide fluid delivery and to maximize stroke volume,
could reduce the incidence of AKI.
Other authors [86] confirmed that intraoperative lactic

acidosis or vasopressor requirement precedes subse-
quent AKI development and that failure to achieve pre-
operative DO2 is significantly associated with the
increase of postoperative creatinine. Interestingly, AKI

(See figure on previous page.)
Fig. 2 Forest plot for postoperative acute kidney injury (AKI) (defined as the proportion of patients who developed postoperative worsening of
renal function, whichever definition was used by the authors of the included studies). Studies were split in high and low risk of bias, according to
a domain-based evaluation, as proposed by the Cochrane Collaboration. RCTs with 5 or 6 green plus were considered as having an overall low risk of
bias (see text for details). Size of squares for odds ratio reflects weight of trial in pooled analyses. Horizontal bars represent 95% confidence intervals
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was not prevented by GDT or standard care after lactic
acidosis developed or vasopressors were required. Tak-
ing together, these data suggest that both lactic acidosis
and hypotension may be late indicators of a reduction of
renal perfusion pressure, and that, in order to avoid
AKI, the best goal is to maintain an individualized DO2.
Basing on this rationale, fluid resuscitation is crucial to
maintain CO and renal blood flow. GDT allows a time-
lier fluid replacement strategy in patients who need it,
avoiding at the same time excessive fluid loading in pa-
tients that do not [5]. In all GDT protocols, however,
fluid resuscitation is only the first step. In patients who
cannot achieve adequate DO2, inotropes are necessary,
acting in a synergistic manner with fluids, since GDT
fluid therapy allows optimal use of inotropic drugs, and
inotropic drugs reduce the risk of fluid overload, opti-
mizing CO [5]. Our results further reinforce these
figures, since GDT guided by CO and DO2 as
hemodynamic target, with fluids and inotropes, shows a
significant reduction in AKI.
Recent evidence suggests that the type of fluid may be

critical in determining AKI [87]. Several concerns about
renal toxicity of HES solutions have been raised, and
their safety in surgical patients is still under debate [88,
89]. We tried to investigate the effect of GDT adopting
HES solutions: the subgroup analysis including only
RCTs that showed a statistical difference between treat-
ment and control group during the perioperative period
in the total amount of HES administered did not find
any statistical difference in AKI incidence. In most stud-
ies, HES were used both in intervention and control
groups. Therefore, in order to explore the association
between AKI and HES, we tried to select papers on the
basis of a significant difference in the amount given.
Colloids seem neither to benefit nor to harm AKI if
given within an individualized, timely fluid “replace-
ment” strategy. Interestingly, a very recent RCT [90]
reached the same results. However, no clear conclusion
can be drawn, since, paradoxically, colloids might harm
the kidney in the context of a beneficial GDT effect. Fur-
ther trials are needed to investigate the effect of starch
solution on AKI in surgical patients.
GDT significantly reduced the incidence of postopera-

tive AKI in high-risk patients that included aged people,
ASA III–IV, with increased risk of mortality and morbid-
ity due to reduced cardiovascular reserve, undergoing
high-risk procedures with increased risk of blood loss

and/or fluid shift. These characteristics are all well-
known risk factors for postoperative renal injury [91].
Therefore, it is logical to argue that this category of frail
patients would more benefit from GDT to improve sys-
temic oxygenation and to maintain organ perfusion.
The subgroup analysis on surgeries showed that GDT

significantly reduced AKI after abdominal and ortho-
pedic procedures, while no effect was seen in other sur-
geries. Surgical stress may increase oxygen demand up
to 40% in major abdominal surgery [92]. Moreover,
major abdominal surgery can cause an increase of intra-
abdominal pressure, linked to an increase in capillary
permeability and interstitial fluid accumulation or to a
diminished abdominal wall compliance that, in turn,
causes intrarenal vascular congestion with a reduction in
renal perfusion [83]. On the other side, orthopedic pa-
tients include often very aged people with severe co-
morbidities (i.e., hypertension, renal failure, diabetes)
that easily expose them to an increased risk of postoper-
ative AKI [93]. Recent findings suggest that advanced
age, hypertension, general anesthesia, and low intraoper-
ative arterial pressure are all risk factors for AKI after
joint replacement surgery [94]. Therefore, a strategy
aimed to maintain CO seems reasonable to protect
against AKI, at least in these surgical settings. No defin-
ite conclusion on other surgeries could be drawn, since
the low number of included trials in other subgroup
analysis is not sufficient to detect any effect, precluding
any definite conclusions.
This study has a number of limitations. No attempt

was made to correct for the type or quantity of fluids or
inotropes given, because they are inconsistently reported
in the literature and have a demonstrable wide variability
in their dosing across studies. Moreover, the included
studies vary in terms of hemodynamic monitoring, the
goals, and the timing of intervention: this could have in-
troduced a relatively high clinical heterogeneity, al-
though the results remain consistent across a number of
subgroups and sensitivity analyses.
Additional well-designed RCTs are necessary to reach

the target of an “individualized” GDT, for example by bet-
ter defining renal risk, or preoperative cardiological per-
formance, the amount of fluid, and the dose of vasoactive
administered, using accepted and uniform definitions, as
well as a consistent AKI definition, like KIDGO proposes.
Recent trials [95, 96] gave some interesting insight on this
approach, suggesting that an implementation of the

(See figure on previous page.)
Fig. 3 Forest plot for postoperative acute kidney injury (AKI) (defined as the proportion of patients who developed postoperative worsening of
renal function, whichever definition was used). Studies were defined according to the target used in the GDT protocol (stroke volume and
oxygen delivery or other indexes of oxygen delivery, indices of fluid-responsiveness, such as pulse pressure variation or stroke volume variation,
and mixed venous oxygen saturation or other indirect indexes of oxygen delivery such as lactate). Size of squares for odds ratio reflects weight of
trial in pooled analyses. Horizontal bars represent 95% confidence intervals
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Fig. 4 Forest plot for postoperative acute kidney injury (AKI) (defined as the proportion of patients who developed postoperative worsening of
renal function, whichever definition was used). Studies were split into trials that used fluids alone or both fluids and inotropes. Size of squares for
odds ratio reflects weight of trial in pooled analyses. Horizontal bars represent 95% confidence intervals
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Fig. 5 (See legend on next page.)
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KDIGO guidelines, including hemodynamic optimization,
reduced the frequency and severity of postoperative AKI
in high-risk patients, identified by urinary biomarkers.

Conclusions
This up-to-date meta-analysis, within the limitations of
existing data, the high clinical heterogeneity and the ana-
lytic approaches used, confirms that GDT significantly re-
duces postoperative AKI. The result is reinforced by TSA
and considering only low risk of bias trials. Moreover, it
suggests that targeting GDT to perioperative systemic
DO2, by means of fluid and inotropes, is the simplest way
to improve renal perfusion, at least in high-risk patients
undergoing abdominal or orthopedic procedures.
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physical status classification (i.e., ASA III–IV), age > 60 years, and preoperative morbidity. Size of squares for odds ratio reflects weight of trial in
pooled analyses. Horizontal bars represent 95% confidence intervals
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