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Abstract

Background: Extracorporeal membrane oxygenation (ECMO) is a cardiorespiratory support technique for patients
with circulatory or pulmonary failure. Frequently, large-volume fluid resuscitation is needed to ensure sufficient
extracorporeal blood flow in patients initiating ECMO. However, excessive overhydration is known to increase
mortality in critically ill patients. Therefore, in order to define a tolerant volume range in patients undergoing ECMO
treatment, the association between cumulative fluid balance (CFB) and outcome was evaluated in patients
undergoing ECMO.

Methods: This retrospective multicenter cohort study was conducted with 723 patients who underwent
ECMO in three tertiary care hospitals between 2005 and 2016. CFB was calculated as total fluid input minus
total fluid output during the first 3 days from ECMO initiation. The patients were divided into groups that
initiated ECMO owing to cardiovascular disease (CVD)-related or non-cardiovascular disease (non-CVD)-related
causes. The primary endpoint was mortality within 90 days after ECMO commencement.

Results: Totals of 406 and 317 patients were included in the CVD and non-CVD groups, respectively. In the
CVD group, the mean age was 584 + 17.7 years, and 68.2% were male. The mean age was 55.7 + 15.7 years,
and 65.3% were male in the non-CVD group. The median CFB values were 64.7 and 53.5 ml/kg in the CVD
and non-CVD groups, respectively. Multivariable analysis using Cox proportional hazards models revealed a
significantly increased risk of 90-day mortality in patients with higher CFB values in both the CVD and non-CVD groups.
However, the risks were elevated only in the two CFB quartile groups with the largest CFB amounts. Cubic spline
models showed that mortality risk began to increase significantly when CFB was 82.3 ml/kg in the CVD
group. In patients with respiratory diseases, the mortality risk increase was significant for those with CFB
levels above 189.6 ml/kg.

Conclusions: Mortality risk did not increase until a certain level of fluid overload was reached in patients
undergoing ECMO. Adequate fluid resuscitation is critical to improving outcomes in these patients.
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Background

Extracorporeal membrane oxygenation (ECMO) is a sal-
vage therapy for patients with severe respiratory and heart
failure [1-4]. Patients frequently require large-volume
fluid resuscitation during the initial phases of ECMO
treatment in order to maintain a sufficient amount of vas-
cular blood drainage for extracorporeal blood flow [5-7].
This need for liberal fluid infusion during ECMO treat-
ment is further exacerbated by the fact that most patients
undergoing ECMO treatment are in an intravascular
hypovolemic state aggravated by systemic capillary leakage
[8, 9]. In addition to the inevitable large-volume fluid re-
suscitation, administration of blood products for bleeding
events accompanying ECMO implantation and reduced
urine volume caused by concomitant acute kidney injury
(AKI) also play a part in the aggravation of fluid overload
in patients undergoing ECMO [10-14]. Furthermore, ex-
cessive positive fluid balance during intensive care unit
(ICU) stay is reported to affect outcome, and a positive
fluid balance was found to increase the risk of mortality in
patients with septic shock [15-17]. In addition,
large-volume intravenous fluid therapy was associated
with more cardiac arrest events and increased pulmonary
edema in patients resuscitated from cardiac arrest events
[18], and excessive volume overload was found to be
linked to poor survival, even in patients undergoing
ECMO therapy [19, 20]. Therefore, although large-volume
resuscitation is necessary in most patients initiating
ECMO, excessive volume overload may lead to poor out-
comes. The clinically significant volume overload thresh-
old has not yet been established.

Cumulative fluid balance (CFB) has been widely used
as a surrogate marker of fluid therapy during ICU treat-
ment. Higher CFB values after ICU admission were
found to increase the risk of AKI development [21]. In
addition, CFB has been reported to be associated with
worse clinical outcomes in patients with sepsis [15, 22],
acute lung injury [23, 24], and cancer [25]. Therefore,
the association between CFB during the initial phase of
ECMO treatment and outcome was evaluated, and a
clinically significant threshold level of CEB that affects
outcome was investigated.

Methods

Patient selection

Patients who received ECMO at Yonsei University
Health System, Seoul National University Hospital, and
Seoul National University Bundang Hospital from Janu-
ary 2005 to May 2016 were initially screened (n = 1499).
Patients who met the following criteria were excluded
(n=776): (1) age under 18 years, (2) ECMO support for
less than 24 h, (3) death within 3 days from ECMO initi-
ation, (4) switching of ECMO modality, (5) end-stage
renal disease with dialysis at admission, (6) transfer after
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initiating ECMO in other hospitals, and (7) missing data.
As a result, 406 patients who underwent ECMO for car-
diovascular causes (cardiovascular disease [CVD] group)
and 317 patients who underwent ECMO for non-cardio-
vascular causes (non-CVD group) were included in the
final analysis (Fig. 1). Although myocarditis is caused by
infection, patients with myocarditis were included in the
CVD group on the basis of pathophysiologic consider-
ations. The study protocol was approved by the institu-
tional review boards of Yonsei University Health System
and Seoul National University Bundang Hospital. In-
formed consent was waived by the institutional review
boards owing to the retrospective study design.

Data collection

The patients’ demographic and laboratory data at the
time of ECMO initiation were retrieved from electronic
medical records. The data included age, sex, height,
weight, underlying medical conditions, cause of ECMO,
mode of ECMO (venoarterial [VA]-ECMO or venove-
nous [VV]-ECMO), ECMO settings, and total fluid input
and output on each day of ECMO therapy. Laboratory
data, including white blood cell count, hemoglobin, so-
dium, potassium, bicarbonate, albumin, bilirubin,
C-reactive protein, blood urea nitrogen, creatinine, and

Patients treated with ECMO were
screened from January 2005 to May
2016 (n = 1499)

Excluded patients aged under 18
(n =229)

1270 adult patients treated with ECMO

Excluded

* ECMO support less than 24
hours (n = 244)

« Death within 3 days from
ECMO initiation (n = 118)

» Switching ECMO modality
during ICU admission (n = 34)

* Already had ESRD (n = 32)

* Initiated ECMO in other
hospitals (n = 4)

«  With no record of weight
(n=115)

723 patients were enrolled |

|

317 patients with non-
cardiovascular origin

406 patients with
cardiovascular origin

Fig. 1 Flowchart of participant enrollment. ECMO Extracorporeal

membrane oxygenation, ESRD End-stage renal disease
- J
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arterial blood gas analysis on the day of ECMO implant-
ation, were also collected.

Acute Physiology and Chronic Health Evaluation
(APACHE) II scores were calculated on the basis of
medical records. The ENCOURAGE (Prediction of car-
diogenic shock outcome for AMI patients salvaged by
VA-ECMO) and PRESERVE (Predicting death for severe
ARDS on VV-ECMO) scores were also calculated for pa-
tients in the CVD and non-CVD groups, respectively
[26, 27]. The Modification of Diet in Renal Disease
equation was used to determine the estimated glomeru-
lar filtration rate (eGFR) [28]. Baseline serum creatinine
was defined as the average serum creatinine within
3 months prior to ICU admission. For those whose base-
line creatinine levels were not obtainable, urine output
was used for AKI diagnosis. Development of AKI within
72 h of ECMO implantation was evaluated using the
Kidney Disease: Improving Global Outcomes (KDIGO)
AKI criteria [29]. The amount of fluid administered was
decided by the intensive care specialists. Crystalloid
fluids were used to maintain fluid therapy for all pa-
tients. The low-chloride fluid resuscitation strategy had
not been widely practiced in the institutions during the
study period. Cumulative input was defined as total ad-
ministration of fluid within 3 days of ECMO initiation,
which was divided by patients’ body weight at the time
of ECMO initiation. In addition, cumulative total output
was defined as the sum of all fluid drainage from pa-
tients, and cumulative urine output as the sum of the
total amount of urine during 3 days from ECMO initi-
ation divided by body weight. CFB was defined as cumu-
lative input minus cumulative total output. Daily fluid
balance before ECMO was defined as total fluid input
minus total output from ICU admission to ECMO initi-
ation, which was divided by ICU length of stay (LOS)
and patients’ body weight. If patients were admitted to
the ICU after surgery, fluid balance during surgery was
also included in daily fluid balance before ECMO.

ECMO protocol

The decision to initiate ECMO therapy was made by the
treating intensive care specialist or the attending cardio-
thoracic surgeons. Indication for ECMO was classified
into two categories. Indications for ECMO in the CVD
group were as follows:

1. Postcardiotomy status

Acute cardiogenic shock for coronary arterial

disease

Acute myocarditis

4. Bridge to cardiac transplant for decompensated
heart failure

5. Post-cardiac arrest status

I
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Indications for ECMO in the non-CVD group were as
follows:

1. Acute respiratory distress syndrome (ARDS) of any
cause

2. Bridge to lung transplant

3. Miscellaneous or unknown origin

Cannulations for all ECMO supports were performed
by cardiovascular surgeons with limited cut-down using
the Seldinger technique [30]. Either the CAPIOX EBS
(Terumo Co., Ltd,, Tokyo, Japan) or the QUADROX
PLS (Maquet GmbH, Rastatt, Germany) system was
used in all patients. The sweep gas flow was set to
maintain a partial pressure of carbon dioxide target of
35-45 mmHg under lung rest ventilation strategy. The
target ECMO blood pump speed was 3.0-4.5 L/min.
Systemic anticoagulation with unfractionated heparin
was titrated to maintain activated clotting times (ACT)
between 180 and 220 s and between 160 and 180 s for
VA-ECMO and VV-ECMO, respectively. ACT was
measured using STA R MAX® hemostasis analyzer
(Diagnostica Stago, Inc., Parsippany, NJ, USA).
Hemolysis markers, such as free plasma hemoglobin and
haptoglobin, were monitored every day. Careful inspec-
tions were made by the intensive care specialist to
determine the cause of hemolysis when plasma
hemoglobin levels were greater than 50 mg/dl. ECMO
circuit change was performed when ECMO-related tech-
nical problems were suspected as the cause of hemolysis.
Red blood cell (RBC) transfusion was performed to
maintain hemoglobin target between 10 and 11 g/dl. An-
tithrombin (AT) replacement was performed when AT
activities were less than 70%. Other specific ECMO run
protocols are delineated in Additional file 1: Table S1.

Continuous renal replacement therapy protocol

In the event of the development of AKI, the decision to
start continuous renal replacement therapy (CRRT) was
made by the attending nephrologist. Generally, CRRT
was applied to patients with AKI who had uncontrolled
fluid overload, hyperkalemia, or metabolic acidosis. Con-
tinuous venovenous hemodiafiltration was applied using
Prisma (Gambro Co., Ltd., Hechingen, Germany), Pris-
maflex (Gambro Co., Ltd.), or multiFiltrate (Fresenius
Medical Care GmbH, Bad Homburg, Germany) ma-
chines. Biocompatible AN69 ST membranes were used
for Prisma and Prismaflex, and polysulfone membranes
were used for multiFiltrate. Bicarbonate-containing re-
placement fluid was administered by the predilution
method. CRRT machines were routinely applied via sep-
arate lines from the ECMO circuit. However, when add-
itional venous access was not obtainable, CRRT was
performed over the same circuit with ECMO. In these
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cases, CRRT was applied between ECMO pump and
oxygenator to avoid air entrainment.

Clinical outcome

The patients were followed until their last visit at our
centers or death. The primary endpoint was death from
any cause within 90 days after ECMO initiation. Survival
data were collected through electronic medical records
of the hospital and outpatient clinics.

Statistical analysis

Patients in each group were categorized into quartiles
according to the CFB of each group. Continuous vari-
ables were expressed as mean + SD. Comparisons of
continuous variables were conducted with one-way ana-
lysis of variance, and linear trend was analyzed among
groups. The normality of the distribution was analyzed
using the Kolmogorov-Smirnov test. Variables not nor-
mally distributed were expressed as median and IQR
and compared with the Jonckheere-Terpstra test. Cat-
egorical variables were expressed as percentages and
compared with the chi-square test. Cumulative survival
curves were derived using the Kaplan-Meier method,
and statistical differences were analyzed using the
log-rank test. To evaluate the association between out-
comes and clinical parameters, a Cox proportional haz-
ards model was used, and data were expressed as HR
with 95% CIL. This model included propensity scores.
The propensity score was obtained by using a multivari-
ate logistic regression analysis to determine whether the
CFB of each patient was higher than the median
amount. The covariates for adjustment were selected
using a stepwise procedure when the P value for each
variable was less than 0.2. All variables, except those that
were already included in the APACHE II score, were in-
cluded for propensity score calculation. Those who were
lost to follow-up were treated as censored in the survival
analysis. Cubic spline curve analysis was conducted as
previously described by Canaud et al. [31]. The Cox
model for 90-day mortality was used, and cubic spline
curves had four equally distributed knots. The threshold
of CFB was defined as the point where the lower limit of
the 95% CI was higher than 1.0. Analyses were con-
ducted for the CVD and non-CVD groups. Additional
evaluations were also conducted after dividing the
non-CVD group into a respiratory group and an others
group. The respiratory group was defined as patients
who underwent ECMO for lung transplant, ARDS, or
other pulmonary diseases. All other patients in the
non-CVD group were defined as the others group. Stat-
istical significance was defined as P <0.05. All analyses
were conducted using SPSS version 23.0 software (IBM,
Armonk, NY, USA) and R language (version 3.3.1; R
Foundation for Statistical Computing, Vienna, Austria).
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Results

Baseline characteristics of patients

The baseline characteristics of the patients in the CVD
group are presented in Table 1. The mean age was 58.4
+17.7 years, and 68.2% were male. The most common
cause of ECMO implantation was nonoperative CVD,
and 98% of patients underwent VA-ECMO. The median
CEB was 64.7 ml/kg, whereas the median daily fluid bal-
ance throughout the entire period of ECMO was
26.2 ml/kg/d. The median duration of ECMO treatment
was 3 days. The age of the patients tended to increase in
patients with higher CFB quartiles. Body weight tended
to decrease in higher CFB quartiles, but body mass index
(BMI) was comparable among the quartiles. In the
non-CVD group, the mean age was 55.7 + 15.7 years,
and 65.3% of patients were male. Among these patients,
201 (63.8%) patients received ECMO treatment for re-
spiratory disease, and VA-ECMO was applied for 23% of
the patients. The median CFB was 53.5 ml/kg, and
median daily fluid balance during the entire ECMO
period was 15.9 ml/kg. Patients’ weight and BMI were
comparable among the CFB quartiles. However, APA-
CHE II scores tended to increase in patients with higher
CFB quartiles (Table 2). In the non-CVD group, there
were no significant differences in Charlson comorbidity
index (P =0.616), APACHE II score (P =0.302), and CFB
(P=0.206) between VA-ECMO- and VV-ECMO-treated
patients. Regarding the resuscitation volume differences
during the study duration, further analyses were made
by categorizing the patients into three groups according
vintage: 2005-2008, 2009-2012, and 2013-2016. When
the CFB quartiles were compared among the vintage
groups, no statistical differences were found
(Additional file 2: Figure S1).

Outcome of patients

In the CVD group, AKI occurred in 306 (75.4%) patients
and CRRT was commenced in 127 (31.3%) patients dur-
ing the initial 3 days of ECMO initiation. The occur-
rence rate of AKI tended to increase in quartiles with
higher CFB values. In addition, in the CVD group, me-
dian ICU LOS was 8 days. A total of 207 deaths (51.0%)
occurred within 90 days of ECMO initiation, and the
mortality rate tended to increase in higher CFB quartiles
(P <0.001). In the non-CVD group, 184 (70.0%) patients
underwent AKI, and CRRT was applied in 92 (29.0%)
patients during first 3 days of ECMO commencement.
Both AKI occurrence (P=0.011) and CRRT application
rates (P=0.011) tended to increase in patients with
higher CEB. Patients treated with VA-ECMO had a sig-
nificantly higher incidence of AKI than those treated
with VV-ECMO (P =0.014). The median ICU LOS was
16 days. During the 90 days of ECMO initiation, a total
of 209 (65.9%) deaths occurred (Table 3).
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Table 3 Outcome of patients according to cumulative fluid balance quartiles
Variables CFB quartiles Total P for
Quartile 1 Quartile 2 Quartile 3 Quartile 4 trend
Cardiovascular disease
Incident AKI (n, %) 60 (59.3) 76 (74.4) 86 (84.3) 84 (83.1) 306 (754) <0.001
CRRT treatment (n, %)* 26 (25.7) 24 (23.5) 48 (47.1) 29 (28.7) 127 (31.3) 0.114
Days of CRRT before ECMO (days)T 0 (0-1) 0 (0-1) 1(0-1) 0 (0-2) 1(0-1) 0.082
ICU LOS (days)tt 10 (5-16) 10 (6-18) 7 (3-14) 7 (4-14) 8 (4-15) 0.014
90-day mortality (n, %) 35(347) 43 (42.2) 71 (69.6) 58 (574) 207 (51.0) <0.001
Non-cardiovascular disease
Incident AKI (n, %) 47 (68.1) 34 (53.1) 54 (76.1) 49 (83.1) 184 (70.0) 0.011
CRRT treatment (n, %)* 17 (21.5) 16 (20.3) 32 (40.0) 27 (34.2) 92 (29.0) 0.0M1
Days of CRRT before ECMO (days)* 1(0-2) 1(1-2) 2(1-2) 1(1-2) 3(1-3) 0483
ICU LOS (days)tt 18 (10-33) 17 (11-28) 13 (8-31) 17 (6-40) 16 (9-32) 0.239
90-day mortality (n, %) 49 (62.0) 43 (54.4) 63 (78.8) 54 (684) 209 (65.9) 0.069

Abbreviations: AKI Acute kidney injury, CFB Cumulative fluid balance, CRRT Continuous renal replacement therapy, ECMO Extracorporeal membrane oxygenation,

ICU Intensive care unit, LOS Length of stay

*Continuous renal replacement therapy imitation during the first 3 days of ECMO commencement

Data are expressed as median and IQR and compared by Jonckheere-Terpstra test

*LOS was presented in patients who survived at 30th day from ECMO initiation

Relationship between CFB quartile groups and mortality

The Kaplan-Meier curves revealed that the cumulative
survival rates of CFB quartiles 3 (P <0.001) and 4 (P<
0.001) were significantly lower than those of CFB quar-
tiles 1 and 2 in the CVD group (Fig. 2a). The non-CVD
group was further divided into those initiating ECMO
for respiratory failure (respiratory group) and other
causes (others group). The characteristics of the respira-
tory group are presented in Additional file 1: Table S2.
In patients in the respiratory group, the cumulative sur-
vival rate of CFB quartile 4 was significantly lower than
quartile 1 (P =0.047) (Fig. 2b). In addition, in the others
group, CFB quartile 4 showed a significantly lower cu-
mulative survival rate than quartile 1 (P=0.004) and

quartile 2 (P=0.001) (Fig. 2c). When patients in the
non-CVD group were divided into those treated with
VA-ECMO or VV-ECMO, those treated with VA-ECMO
had significantly lower cumulative survival rates than
those treated with VV-ECMO (P = 0.002).

In addition, when the association between CFB and
mortality was further evaluated using multivariate Cox
proportional hazards regression analyses, in the CVD
group, the risk of mortality significantly increased in pa-
tients in CFB quartiles 3 (HR, 2.58; 95% CI, 1.62—-4.11; P
<0.001) and 4 (HR, 2.11; 95% CI, 1.26-3.54; P =0.004)
compared with that of patients in CFB quartile 1. How-
ever, the mortality risk did not show a significant in-
crease among patients in CFB quartile 2. Similarly, in

a 1004 — Q1: -4.8 (-25.2-9.6)* b 1004 — Q1: 0.8 (-17.2-8.4)* 1004 — Q1: -13.3 (-31.5--2.4)*
—- Q2: 38.2 (27.6-51.4)* —= Q2: 36.3 (29.8-42.5)* I —= Q2: 31.1 (21.3-42.5)*
— Q3: 109.7 (77.4-137.3)* I1 ' — Q3: 75.1 (61.5-97.7)* Q3: 69.6 (59.3-82.0)*
= Q4: 222.9 (194.6-272.7)* = . —= Q4: 206.0 (168.5-270.5)* = Q4: 180.6 (108.4-253.2)*
> 75 > 754 > 754
< 4 2
3 = 3
n [l 2]
3 o [
2 2 2
% 501 & 507 % 50 Q4 vs Q1 and Q2, P < 0.05
S S = Q3 vs Q2, P <0.05
E E E
=] =3 =3
o | o e o o | LY e
254 254 254
Q4 vs Q1 and Q2, P < 0.001 Q4 vs Q1, P <0.05
Q3 vs Q1 and Q2, P < 0.001
0 r r x o v T v o v v T
0 30 60 20 0 30 60 20 0 30 60 20
Duration (days) Duration (days) Duration (Days)
Q1 101 96 55 27 15 1" 8 Q1 79 79 49 31 22 17 13 a1 28 13 7 6 4 3 2
Q2 102 100 59 37 24 16 12 Q2 79 78 50 34 26 18 15 Q2 29 15 10 8 8 6 3
Q3 102 99 36 19 12 6 2 Q3 80 76 34 28 17 1 8 Q3 29 9 6 3 0 0 0
Q4 101 94 34 16 7 4 2 Q4 79 76 39 27 17 10 6 Q4 28 5 3 2 2 1 1
Fig. 2 Kaplan-Meier (KM) plots for 90-day mortality in each cumulative fluid balance quartile. a KM plots representing patients with cardiovascular
disease. b KM plots representing patients with respiratory disease. € KM plots representing patients with other disease. *Median and IOR of cumulative
fluid balance (ml/kg) for each quartile
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the non-CVD group, the mortality risk of CFB quartiles
3 (HR, 1.66; 95% CI, 1.06-2.59; P=0.026) and 4 (HR,
1.69, 95% CI, 1.05-2.72; P=0.03) was significantly
higher than quartile 1, whereas mortality risk did not
significantly differ between CFB quartiles 1 and 2
(Table 4). These findings imply that a CFB below the
level of CFB quartile 3 in both the CVD and non-CVD
groups may not increase the risk of mortality. When
CFB was considered as a continuous variable,
log-transformed CFB was independently associated with
90-day mortality in both the CVD group (HR, 1.76; 95%
CI, 1.37-2.27; P<0.001) and the non-CVD group (HR,
1.46; 95% CI, 1.17-1.83; P < 0.001) (Table 5).

No significant interactions between APACHE II scores
and CFBs were found in both the CVD and non-CVD
groups (P=0.521 for CVD group, P=0.166 for
non-CVD group). When further adjustments were made
for daily fluid balance before ECMO commencement,
the relationship between CFB and risk of mortality was
preserved in both groups. In addition, cumulative input
was independently associated with 90-day mortality even
after adjustments were made for cumulative total output
and urine output (Table 5).

When multivariate Cox models were analyzed with ad-
justment for ENCOURAGE score instead of APACHE II
score in the CVD group, the relationship between CFB
and 90-day mortality remained significant. This relation-
ship was also maintained when adjustments were made
for PRESERVE score instead of APACHE II score in pa-
tients who had undergone VV-ECMO in the non-CVD
group (Additional file 1: Table S3).

Significant CFB threshold level in ECMO patients

To further investigate the CFB threshold level that consid-
erably increases the risk of mortality in ECMO patients,
the relationship between CFB and mortality risk was eval-
uated by cubic spline analyses. In the CVD group, the
relative HR of mortality started to increase significantly
when CFB values were greater than 82.3 ml/kg (Fig. 3a).
The relative HR increased significantly above CFB levels

Table 4 Cox regression analyses for 90-day mortality
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of 189.6 ml/kg in the respiratory group (Fig. 3b). In the
others group, relative HR tended to increase with higher
CFB amounts without statistical significance (Fig. 3c).

Discussion

Large amounts of fluid resuscitation are inevitable in pa-
tients initiating ECMO. However, excessive fluid over-
load can negatively impact outcomes in these patients.
In this study, we have shown that CFB was a significant
factor affecting mortality risk in patients treated with
ECMO. This increase in mortality risk was significant
only when the CFB was greater than 82.3 ml/kg in pa-
tients who were treated with ECMO for cardiovascular
reasons. For those who were treated with ECMO for re-
spiratory causes, mortality risk increase was substantial
when CFB was above 189.6 ml/kg.

In patients undergoing ECMO treatment, large-vol-
ume fluid administration is frequently required. This is
due mainly to disease severity. However, maintaining ad-
equate blood flow for ECMO treatment also plays a part.
Patients typically go through a systemic inflammatory
response within the first few days of ECMO treatment
[6]. This response induces pathologic vasodilation and
fluid loss to the interstitial compartment, resulting in re-
duced vascular volume. In addition, major conditions as-
sociated with patients undergoing ECMO, such as shock
and low cardiac output as well as increased capillary
leakage related to sepsis-like syndrome, are factors that
contribute [8, 32, 33]. This insufficient intravascular vol-
ume can lead to extracorporeal flow failure, which re-
sults in more frequent ECMO circuit changes and
decreased total ECMO delivery time [6, 34]. In a retro-
spective study of pediatric patients who received ECMO
treatment for severe pneumonia, frequent circuit change
was a significant risk factor for death [35]. In addition,
in a recent investigation of 172 adult patients receiving
ECMO, ECMO circuit change was more frequent in pa-
tients undergoing concomitant CRRT and ECMO treat-
ment, which resulted in an increased mortality rate in
these patients [19]. Therefore, the administration of

CFB Cardiovascular disease Non-cardiovascular disease
quartiles Unadjusted Adjusted* Unadjusted Adjusted*

HR (95% Cl) P value HR (95% Cl) P value HR (95% Cl) P value HR (95% Cl) P value
Quartile 1 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
Quartile 2 1.17 (0.75-1.83) 0496 1.27 (0.77-2.10) 0.342 0.84 (0.56-1.27) 0407 0.79 (048-1.30) 0.345
Quartile 3 2.82 (1.88-4.23) <0.001 258 (1.62-4.11) <0.001 61 (1.11-2.34) 0.012 1.66 (1.06-2.59) 0.026
Quartile 4 224 (147-341) <0.001 2.11 (1.26-3.54) 0.004 1.37 (0.93-2.02) 0.108 1.69 (1.05-2.72) 0.030

CFB Cumulative fluid balance

*Adjusted for age, sex, Charlson comorbidity index, Acute Physiology and Chronic Health Evaluation Il score, and propensity score
Propensity score was obtained by logistic regression analysis with covariables body mass index, extracorporeal membrane oxygenation (ECMO) pump time, ECMO

blood flow rate, albumin, total carbon dioxide, acute kidney injury stage
The 27 (3.7%) patients who were lost to follow-up were treated as censored
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Table 5 Cox regression analyses for 90-day mortality with cumulative fluid balance, cumulative input, and output

Models Variables Cardiovascular disease Non-cardiovascular disease
HR (95% CI) P value HR (95% Cl) P value
Model 1 CFB* 1.76 (1.37-2.27 <0.001 146 (1.17-1.83) <0.001
Model 2 CFB* 1.67 (1.19-2.34 0.003 1.55 (1.16-2.09) 0.003
Model 3 Cumulative input*" 335 (1.64-6.83 0.001 5.53 (260-11.75) < 0.001
Cumulative total Outpu‘[*’T 0.56 (0.47-0.76, <0.001 0.25 (0.14-0.45) <0.001
Model 4 Cumulative inpu‘[*’f 266 (1.30-5.44 0.007 1.92 (1.08-342) 0.027
Cumulative urine output®" 0.78 (0.67-0.91 0.001 0.84 (0.75-0.93) 0.001

CFB Cumulative fluid balance

Model 1: Additionally adjusted for age, sex, Charlson comorbidity index, Acute Physiology and Chronic Health Evaluation Il score, and propensity score

Model 2: Model 1 + daily fluid balance before ECMO*"

Model 3: Model 2 + cumulative input + cumulative total output without CFB
Model 4: Model 2 + cumulative input + cumulative urine output without CFB
*Data were log-transformed

During 3 days from extracorporeal membrane oxygenation (ECMO) commencement
IDaily fluid balance during intensive care unit admission before ECMO commencement
Propensity score was obtained by logistic regression analysis with covariables body mass index, ECMO pump time, ECMO blood flow rate, albumin, total carbon

dioxide, acute kidney injury stage
The 27 (3.7%) patients who were lost to follow-up were treated as censored

sufficient amounts of intravenous fluid to maintain a sat-
isfactory extracorporeal blood flow is a critical compo-
nent in the management of patients initiating ECMO.
Accordingly, in this study, 85.9% of the patients main-
tained a positive CFB. In addition, the overall average
CFB was greater than that of previously reported ICU
patients not undergoing ECMO treatment [15, 21].
Excessive CFB during the initial phase of ECMO was
found to be independently associated with increased
mortality risk. This association between positive fluid
balance and survival in ECMO-treated patients has been
proposed previously. In a study of 172 patients receiving
VA-ECMO or VV-ECMO treatment, positive fluid bal-
ance at the third day of ECMO treatment was an inde-
pendent predictor of mortality [19]. In addition, in
pediatric patients requiring concomitant ECMO and
CRRT treatment, the degree of fluid overload at the time

of ECMO initiation was significantly associated with
mortality [36]. In this study, the CFB showed a signifi-
cant independent relationship with 90-day mortality.
However, interestingly, the risk of mortality did not
show a significant increase at CFB levels less than
82.3 ml/kg and 189.6 ml/kg for the CVD and respiratory
groups, respectively. This finding suggests that patients
undergoing ECMO might be able to tolerate fluid re-
placement below these thresholds. The risk of mortality
was elevated in proportion to increases in the CFB above
these thresholds, thereby confirming the relationship be-
tween CFB and mortality risk suggested in previous in-
vestigations [19, 20]. However, the relationships between
mortality and CFB were not linear. As mentioned above,
decreased intravascular volume associated with inad-
equate fluid resuscitation could cause frequent ECMO
circuit change, consequently affecting outcome [6, 34].
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Fig. 3 Cubic spline curves for the association between cumulative fluid balance and 90-day mortality. a Cubic spline curve representing patients
with cardiovascular disease. b Cubic spline curve representing patients with respiratory disease. ¢ Cubic spline curve representing patients with
other disease. Dashed line = median cumulative fluid balance, dark gray area = IQR, blue line = permissive threshold of cumulative fluid balance
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This may be one of the reasons why mortality risk did not
show a linear relationship at lower CFB levels. In the CVD
group, HR of mortality did not seem to increase linearly
when CFB was greater than 150 ml/kg. However, the
range of the CIs was too wide to infer a significant rela-
tionship. This could be due to the fact that the number of
patients with extremely high CFB was relatively small. The
threshold CFB amounts proposed in this study require
further validation. However, in light of the fact that a posi-
tive fluid balance during the initial phase of ECMO treat-
ment is generally unavoidable, the CFB thresholds
suggested herein, as determined by mortality risk, could
serve as a basis for the definition of the clinically signifi-
cant fluid overload threshold in ECMO-treated patients.

The increased CFB in this study could have been a re-
sult of disease severity, considering that those with se-
vere systemic vascular leakage and decreased cardiac
function would need larger amounts of fluid resuscita-
tion. The APACHE II scores were not significantly dif-
ferent between CFB quartiles in the CVD group.
However, an APACHE II score increase was noticed in
the highest quartile of the non-CVD group. Fluid over-
load may be a result of severe patient conditions, but it
could also affect outcome by aggravating vascular wall
stretching and worsening vascular permeability [37]. Be-
cause fluid balance and patient severity are intercon-
nected during the treatment course of critically ill
patients, it is not easy to delineate a causal relationship
[37]. Accordingly, in the current study, owing to the
retrospective nature of the investigation, defining the
exact causality between severity and fluid balance was
not possible. However, even after adjustments were
made for disease severity, a significant increased risk of
mortality was noted in the higher CFB quartiles, suggest-
ing that fluid balance could have played an independent
role in affecting outcome. Additionally, the fact that no
significant interactions were found between disease se-
verity and fluid balance further suggests the possibility
that the results presented in this study were an effect of
fluid balance rather than disease severity. Nevertheless,
further investigations controlling the resuscitation vol-
ume amount would be needed to further confirm the
findings of this study.

Both decreased output and increased input played a
role in increasing CFB in ECMO-treated patients in this
study. Lower cumulative total output and cumulative
urine output were both independently associated with
increased risk of mortality. Meanwhile, higher cumula-
tive input also had a significant relationship with mortal-
ity. Notably, this significant relationship with cumulative
input was robust even after adjustments were made for
cumulative total output or cumulative urine output.
Therefore, although decreased output contributes to
the positive CFB, increased fluid input still plays a
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significant role in affecting outcome. Moreover, cumu-
lative input clearly increases the risk of mortality, re-
gardless of output amount, suggesting that the
positive input may affect outcome independently of
disease severity.

The CFB threshold levels found in this study were
higher in the non-CVD group than in the CVD group.
The fact that the patients in the non-CVD group were
younger and had lower APACHE II scores than those in
the CVD group opens the possibility that the non-CVD
group could have been healthier and thereby able to tol-
erate larger amounts of CFB than the CVD group.
Hemodynamic status in VV-ECMO-receiving patients is
determined by a complex interaction of factors, such as
intrathoracic pressure, native cardiac function, pulmon-
ary vascular resistance, systemic vascular tone, and recir-
culation on VV-ECMO, in addition to intravascular
volume. However, the effects of intrathoracic pressure,
native cardiac function, and pulmonary vascular resist-
ance on maintaining hemodynamic status are not sub-
stantial in patients undergoing VA-ECMO, making these
patients relatively more vulnerable to volume than
VV-ECMO patients. Furthermore, in VA-ECMO pa-
tients, unloading the heart with strict volume control
may result in effective preload reduction. However, in
VV-ECMO patients, an adequate amount of preload
would be needed to maintain cardiac output. This could
be one of the reasons that the permissive CFB amount
was lower in the CVD group, in which most of the pa-
tients underwent VA-ECMO, than in the non-CVD
group. Considering that most of the patients in the CVD
group underwent VA-ECMO, ECMO modality could
also have played a role in determining CFB threshold
levels.

There are several limitations of this study. First, al-
though adjustments were made for various confounding
factors, including those that reflected the disease severity
of the patients and the propensity scores, the limitations
owing to the retrospective design should still be
recognized. Second, data regarding medications such as
diuretics, and hemodynamic parameters including
pulmonary arterial pressure, cardiac chamber size, and
cardiac output were not obtainable. Third, parameters to
ensure sufficient ECMO treatment, such as oxygen
consumption, RBC transfusion, amount of recirculation,
incidence of catheter change, or ECMO circuit change
could not be retrieved from the electronic medical re-
cords. Fourth, although protocol-based treatments were
applied for all patients within each center, protocol de-
tails and bedside care would have varied somewhat from
center to center and also over time. Finally, because the
indications and modes of ECMO treatment varied, the
results of this study may not be generalizable to all pa-
tients undergoing ECMO. Although the results were
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controlled for different indications and ECMO modal-
ities, validation in specific subgroups is needed.

Conclusions

Excessive CFB during the early phase of ECMO treatment
increased the risk of mortality. However, this risk did not
increase significantly until the CFB reached specific
threshold ranges, which differed according to the disease
origin responsible for ECMO commencement. These re-
sults suggest that fluid therapy in ECMO-treated patients
should be adjusted so as not to exceed this clinically sig-
nificant fluid overload level. Further interventional studies
are needed to confirm these findings.
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