LETTER Open Access

Adjuvant vitamin C in cardiac arrest patients undergoing renal replacement therapy: an appeal for a higher high-dose

Patrick M. Honore^{1*}, David De Bels¹, Thierry Preseau², Sebastien Redant¹, Rachid Attou¹ and Herbert D. Spapen³

We read with interest the excellent review of Spoelstra-de Man et al. which focused on the potential benefit of adjuvant vitamin C (vit C) therapy in ischemia-reperfusion injury [1]. Following an exhaustive in-depth analysis of the impressive experimental, clinical, and safety record of vit C, the authors plead for a randomized controlled clinical trial assessing the effect of early, high-dose (i.e., at least 3 g/day), intravenous vit C administration in post-cardiac arrest patients.

About half of the patients may develop acute kidney injury stage ≥ 1 within 2 days after cardiac arrest and 20 to 60% will require renal replacement therapy (RRT) [2]. Vit C has a molecular weight of 176 Dalton and is thus exposed to significant clearance during RRT. Intermittent hemodialysis as well as continuous RRT (CRRT) are indeed associated with a 50% reduction of plasma ascorbate and vit C levels [3-5]. Diffusion and convection account for two-thirds and one-third, respectively, of the vit C loss [3]. A 3 g daily vit C dose, therefore, is by no means guaranteed to cover the acute need in post-cardiac arrest patients initiated on (C)RRT. Vasopressor-dependent subjects in particular may benefit from increased dosing because vit C has been shown to support endogenous vasoactive catecholamine synthesis. Awaiting solid pharmacological data, we propose to supplement post-cardiac arrest patients not treated with CRRT with 6 g vit C daily. If CRRT is running, the dose should be increased to 12 g. We fully agree with Spoelstra-de Man et al. to administer vit C as early as possible (i.e., before intensive care admission) and to continue treatment for a short period of time.

Abbreviations

CRRT: Continuous renal replacement therapy; RRT: Renal replacement therapy; Vit C: Vitamin C

¹ICU Department Centre Hospitalier Universitaire Brugmann, Place Van Gehuchtenplein,4, 1020 Brussels, Belgium

Full list of author information is available at the end of the article

Authors' contributions

PMH and HDS designed the paper. PMH, DDB, TP, SR, RA, and HDS participated in drafting and reviewing. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹ICU Department Centre Hospitalier Universitaire Brugmann, Place Van Gehuchtenplein,4, 1020 Brussels, Belgium. ²Emergency Department Centre Hospitalier Universitaire Brugmann, Brussels, Belgium. ³Universitair Ziekenhuis Brussel, VUB University, Brussels, Belgium.

Received: 9 June 2018 Accepted: 3 July 2018 Published online: 16 August 2018

References

- Spoelstra-de Man AME, Elbers PWG, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit Care. 2018;22:70.
- Sandroni C, Dell'anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 2016;82:989–99.
- Morena M, Cristol JP, Bosc JY, Tetta C, Forret G, Leger CL, Delcourt C, Papoz L, Descomps B, Canaud B. Convective and diffusive losses of vitamin C during haemodiafiltration session: a contributive factor to oxidative stress in haemodialysis patients. Nephrol Dial Transplant. 2002;17:422–7.
- Fehrman-Ekholm I, Lotsander A, Logan K, Dunge D, Odar-Cederlöf I, Kallner A. Concentrations of vitamin C, vitamin B12 and folic acid in patients treated with hemodialysis and on-line hemodiafiltration or hemofiltration. Scand J Urol Nephrol. 2008;42:74–80.
- Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med. 1999;27:220–3.

^{*} Correspondence: Patrick.Honore@CHU-Brugmann.be