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Abstract

There is considerable physiological and clinical evidence of harm and increased risk of death associated with dysglycemia
in critical care. However, glycemic control (GC) currently leads to increased hypoglycemia, independently associated with a
greater risk of death. Indeed, recent evidence suggests GC is difficult to safely and effectively achieve for all patients. In this
review, leading experts in the field discuss this evidence and relevant data in diabetology, including the artificial pancreas,
and suggest how safe, effective GC can be achieved in critically ill patients in ways seeking to mimic normal islet
cell function. The review is structured around the specific clinical hurdles of: understanding the patient’s metabolic
state; designing GC to fit clinical practice, safety, efficacy, and workload; and the need for standardized metrics. These
aspects are addressed by reviewing relevant recent advances in science and technology. Finally, we provide a set of
concise recommendations to advance the safety, quality, consistency, and clinical uptake of GC in critical care. This
review thus presents a roadmap toward better, more personalized metabolic care and improved patient outcomes.
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Background
Hyperglycemia is prevalent in critical care, caused by a
complex interaction of multiple feedback loops associated
with inflammation as a result of immune responses,
counter-regulatory responses, and high blood glucose it-
self [1, 2]. Hyperglycemia is exacerbated by unsuppressed
endogenous glucose production [1], some medications
(steroids/catecholamines), and high exogenously adminis-
tered nutrition [3]. There is also suppression/loss of pan-
creatic insulin secretion, and loss of sensitivity to insulin,
resulting in reduced insulin-mediated glucose uptake.
Thus, the question arises of whether there is a need for an
“artificial pancreas” or another form of closed-loop, highly
personalized glycemic control (GC) in critical care, similar
to those emerging in type 1 diabetes [4].
To date, blood glucose control to obtain metabolic

homeostasis has given mixed results in clinical trials in

critically ill patients. Initial results of reduced morbidity
and mortality with tight GC [5–9] could not be repro-
duced in large prospective trials [10–12]. More recent
randomized trials using more advanced protocols have
not altered the general direction [13]. However, recent
observational analysis [14] indirectly supports the con-
cept that altered glycemia, and not the underlying
patient or metabolic condition, causes the increase in
mortality, and thus GC is important and needs to be
performed well. Thus, using higher blood glucose targets
to ensure that hypoglycemia is avoided may not be good
enough, reopening some of the debate on GC in terms
of how to provide consistent, safe, effective manage-
ment. However, significant issues prevent safe, effective
GC, clinically, scientifically, and technologically—this
short state-of-the-art review addresses these issues,
resulting in a set of recommendations.
An effective GC protocol or artificial pancreas should

provide insulin similar to a normal subject. In normogly-
cemic individuals, a hyperbolic relationship exists be-
tween insulin sensitivity and insulin secretion, leading to

* Correspondence: Jean-Charles.Preiser@erasme.ulb.ac.be
11Department of Intensive Care, Erasme Hospital, Université Libre de
Bruxelles, route de Lennik 808, 1070 Brussels, Belgium
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chase et al. Critical Care  (2018) 22:182 
https://doi.org/10.1186/s13054-018-2110-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-018-2110-1&domain=pdf
mailto:Jean-Charles.Preiser@erasme.ulb.ac.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


the disposition index concept, a measure of pancreatic
beta cell function adjusted for insulin sensitivity [15].
Studies show that pancreatic function is deranged in
critically ill patients [1] displaying similarities to type 2
diabetes [16, 17], namely insufficient insulin secretion in
a context of decreased insulin sensitivity. The disposition
index is therefore reduced, as in patients with diabetes, as
a result of inflammatory and stress hormones. In both
critical illness and type 2 diabetes, hyperglycemia results
from reduction in the first-phase insulin response [18, 19].
However, the associations between gene markers and out-
come identified in type 2 diabetes have not been found in
critical illness [20], and pancreatic function changes in
critical illness are not associated with obesity or diet [21].
Thus, type 2 diabetes and critical care hyperglycemia can
both feature reduced insulin sensitivity, reduced insulin
clearance, and insufficiently increased insulin secretion,
with resulting hyperglycemia. These effects can appear
more severe over a very short term in critically ill patients
and have different causes. In both conditions, the pancreas
cannot provide the necessary insulin nor fully suppress
hepatic glucose production.
The pancreas is linked to a continuous, accurate glu-

cose “sensor” to guide insulin secretion and control.
However, an equivalent “exogenous” sensor is lacking,
despite emerging continuous glucose monitors [22].
Essential requirements for an artificial pancreas in the
ICU include: accurate real-time or high-frequency con-
tinuous glucose monitoring [23]; continuous intravenous
insulin infusion; and an adequate algorithm that auto-
matically drives the intravenous insulin pump. A
closed-loop system with accurate continuous glucose
monitoring and computer-assisted titration of insulin
based on glucose measurements could permit tight GC
without increasing hypoglycemia and nursing staff
workload.
However, there are significant hurdles to creating an

effective artificial pancreas, both scientifically and techno-
logically. A 2017 ISICEM Working Group addressing the
artificial pancreas in critical care delineated and reviewed
the recent research addressing these hurdles. The subse-
quent sections define the clinical hurdles in this field,
which we use to define key scientific and technical needs.
We then provide a short state-of-the-art overview for each
need, leading to a set of recommendations for improving
GC in the intensive care unit (ICU).

Clinical hurdles
Mixed results from GC clinical studies left the field
questioning the weight of data correlating high glucose,
high glycemic variability, and increased hypoglycemia
from GC with increased morbidity and mortality. The
result has led to a recommendation for a range of “soft”
targets, essentially permitting hyperglycemia of 8.0–

10.0 mmol/l to avoid hypoglycemia [24], despite evi-
dence associating increased time in tight/intermediate
glycemic bands with improved outcomes [25–27].
Hence, the field is at a crossroads between permissive
hyperglycemia and the inability to safely, effectively con-
trol glycemia [14].
Indeed, safe strict GC has proved elusive [5, 7, 9]. Di-

verging results of randomized controlled trials on GC
may be explained by important methodological differ-
ences between trials, compliance, experience, motivation,
and/or protocol. Studies showing a positive impact of
tight GC used accurate glucose monitors and were in
general more successful in achieving the blood glucose
target (e.g., [28]). In subsequent nonconfirmatory stud-
ies, the time in the target range was smaller. Achieving
> 50% time in blood glucose bands of 4.0–7.0 and/or
5.0–8.0 mmol/L for 90% or more of patients is consid-
ered an index of good performance [25–27]. Although
only some patients may benefit from good control [6],
an inability to identify them directly requires safe, tight
control to be delivered to all patients.
Recent work suggests that glycemic outcomes and

their association with morbidity and mortality outcomes
are a function of the quality of control applied [14].
While this analysis needs repeating over larger cohorts
for certainty, it indicates that current acceptance of per-
missive hyperglycemia may carry risk and that GC has a
role to play if it can be delivered with greater safety and
performance. In particular, without better safety from
hypoglycemia it is difficult to assess whether the effects
of strict GC are beneficial. Personalized, patient-specific
GC, potentially including recognition of diabetic status
or other factors, thus offers a route to GC that is safe
and effective for all patients [29], which in turn would
enable new trials to better assess benefit.
Personalized or patient-specific GC transforms bedside

GC data into accurate representations of the patient-specific
metabolic state. Patient-specific models can be used to safely
design GC algorithms in silico, to minimize risk and avoid
the mixed results arising from trial-and-error clinical proto-
col design.
Further clinical hurdles include ergonomics and

workload [30, 31]. Poor ergonomics lead to noncom-
pliance, and thus poor, inconsistent control and out-
comes [30]. Workload, and thus the potential need
for automation, further hinders clinical uptake. Emer-
ging technologies with full automation of sensors
and/or pumps offer first opportunities to examine the
potential of automation on workload and GC quality
[32].
A final hurdle is the inability to fully learn from

prior efforts. Many studies do not report results in
the same way, with numerous different metrics [33].
Those metrics reported often do not allow
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reconstruction of the full results distribution, limiting
complete understanding. Hence, it is difficult to ex-
tract significant, generalizable lessons from many
studies.

Needs statement and goals
These clinical hurdles yield four main needs:

A. To accurately understand patient-specific, real-
time metabolic status.

B. To develop a validated means to design GC
methods to fit clinical practice.

C. To create the right type of safe, effective GC,
providing good control for all patients with an
acceptable workload.

D. To determine the correct set of metrics to evaluate
GC safety and performance, which is generalizable
across studies.

These needs lead to three main goals to create a
step-change in GC capability. Specifically, these are as
follows:

1. Model and (virtual patient) simulator: addressing
needs A and B using in-silico methods to safely
design protocols and, in use, to personalize care to
patient-specific metabolic status.

2. Control (approach): addressing need C, where many
approaches exist, both model-based and clinically
derived, but few have provided consistent safety and
performance.

3. Metrics: directly addressing need D and the
difficulty in comparing the safety and performance
across studies and protocols to derive the lessons
learned and advance understanding.

Figure 1 outlines the current nurse in the loop
approach to model-based GC. Replacing a model-based
decision support method with a standard clinical proto-
col or nurse-driven care shows the loop used in today’s
standard care. Figure 2 shows how the three identified
areas of need fit into this feedback loop in Fig. 1, and
thus outline the overall review, as well as showing how
these elements fit into clinical care.

Models and virtual patient simulators
Metabolic system models
There are several models of human metabolism, pre-
dominantly deterministic compartment models with
specific terms representing the relevant physiological
behaviors [34], as well as black-box or data-driven
models with no direct physiological analogy or rele-
vance. Given the need to identify the patient-specific
metabolic status with limited data for personalized

Fig. 1 Model-based decision support to mimic the human pancreas with a nurse in the loop, but eventually automated. Measurements and other data
are given to a decision support system that identifies patient-specific information, such as insulin sensitivity, to personalize the model. A control protocol
uses these data to generate personalized recommendations for patient care. Change the model-based decision support with a clinical protocol and you
would have standard care
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GC, this section focuses on less complex models,
where the minimum fundamental model inputs to
simulate and/or personalize these models are the in-
sulin and nutrition given, and blood glucose measure-
ments, but can be more extensive. However, no
discussion of possible models is complete due to the
large number of models that have been studied, so
this section focuses on those used in critical care and
for creating virtual patients, specifically:

� ICU Minimal Model [35].
� Glucosafe model [36].
� Cambridge model [37].
� ICING model [38, 39].
� UVA/Padova model [40].

Each model has been used to create in-silico virtual
patients, and has thus moved beyond limited clinical ex-
periments toward engineering design tools to optimize
care.

The ICU Minimal Model is based on the Bergman
Minimal Model [41], and was used to design the LOGIC
controller [42]. It is the least physiologically relevant,
with a minimal number of terms aggregating all glucose
appearance and disappearance routes, and thus the least
specific in terms of how the model terms directly relate
to specific physiological phenomena. Identifying an insu-
lin sensitivity parameter derived from two model param-
eters makes it patient specific. It has been used clinically
and has shown improved control over nurse-managed
GC, a final form of validation [43].
Glucosafe is derived from an earlier form of the

ICING model and a diabetes model [44]. Insulin sensi-
tivity is identified from data and used to create virtual
patients [36]. Glucosafe is more physiologically relevant
than the ICU Minimal Model. However, it has demon-
strated limited performance in pilot GC trials [45].
The Cambridge model is highly physiologically rele-

vant [37], was developed from frequently sampled bed-
side data collected in the ICU, and has been used to

Fig. 2 Three main needs identified related to the overall model-based control loop of Fig. 1
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simulate and design GC in critical care. It uses identified
time-variant insulin sensitivity to guide care and mitigate
errors [46].
The ICING model also has high physiological rele-

vance, has an insulin sensitivity parameter identifiable
from bedside data, and has been used in virtual patients
[39, 47], GC design [48, 49], and real-time GC [49, 50].
The UVA/Padova simulator was developed for type 1

diabetes [40]. This is not a single model, but a collection
of submodels with very high physiological relevance and
detail. However, a given insulin sensitivity or other key
parameters cannot necessarily be identified from bedside
data, limiting it to simulations of generic patients, and it
is thus not validated for clinical use.
While this brief overview is not exhaustive, it clearly

highlights the need for “valid models” meeting three
main criteria. First, an identifiable insulin sensitivity par-
ameter capturing patient-specific glucose responses to
insulin/nutrition inputs to enable personalization. Sec-
ond, a large enough degree of physiological relevance to
ensure that the identified parameter(s) accurately cap-
ture patient-specific behavior so they can be used to de-
sign and/or guide care. Third, rigorous validation via use
in the design and/or implementation of safe, effective
GC. These issues are inter-related, and thus reviewed in
subsequent sections in terms of the use of these models
as virtual patients to design and guide care, and their
subsequent use in guiding GC.

Virtual patients and simulators
Given a metabolic model and the required insulin,
nutrition, and blood glucose data to identify key pa-
rameters to personalize the model, a virtual patient
might be created. A virtual patient is built from the
combination of a metabolic model and clinical patient
data, creating an in-silico representation of that pa-
tient on which new treatment approaches might be
tested, either to create a new protocol and/or in real
time at the bedside to guide care safely and effect-
ively. Thus, a metabolic model captures behavior, and
a virtual patient simulator uses that model with clin-
ical data to mimic patient behavior to design new
therapeutic approaches.
Virtual patients come in two types:

� Generic/cohort specific: created from clinical data
or model parameter choices, they capture overall
patient types or behaviors.

� Clones/patient specific: created directly from clinical
data, they capture the actual patient-specific re-
sponse of a specific patient, and have thus created
an in-silico model “clone” of the patient from their
clinical data, which responds and acts in the same
way as the actual patient.

Generic virtual patients use a selection of clinical data
to fit general, cohort-wide model parameters, which are
perturbed to create realistic cohorts. Simulations are only
valid for predicting cohort-level responses, such as average
glycemia and variability, safety from hypoglycemia, and
required insulin/nutrition inputs. However, specific virtual
patient results may not be realistic. Examples include the
Cambridge simulator [37, 51], the Zealand simulator [52],
the UVA/Padova simulator [53], the Medtronic simulator
[54], and the ICU Minimal Model simulator [35] in dia-
betes. The Cambridge model has captured the central ten-
dency of an ICU cohort [55].
Cloning specific patients from their data to create an

in-silico, computer model mimic is rarer. The UVA
model was used for single-day clones [56] and the Cam-
bridge model in multiday clones [37, 51, 55] in critical
care. Glucosafe [36] was used to create multiday ICU
patient clones for clinical GC [45]; however, the clinical
outcomes did not match reality as well as desired.
Finally, the ICING model and predecessors were used to
create multiday virtual patient clones to design and im-
plement multiple GC protocols. Predicted cohort-level
glycemic results were matched by subsequent clinical
results (e.g., [49]) with good correlation of median
per-patient glucose levels, indicating that the cloned vir-
tual patients were a good representation [39, 47].
The primary concern in creating virtual patients to

design GC protocols is whether results of the virtual
patient simulations accurately predict clinical safety, per-
formance, and workload when a given protocol is imple-
mented clinically. Accurate prediction of what happens
when a model is implemented clinically provides assur-
ance that the model and virtual patient simulator have
the fidelity to design a protocol with confidence in the
resulting safety, performance, and workload, as well as
the fidelity to be used in real-time GC in decision sup-
port. Only the Cambridge and ICING simulators have
delivered good results in this regard. To date, only the
ICING and Cambridge models have been validated using
independent cohorts and protocols [39, 47, 55].
A GC protocol design with virtual patients can be

highly effective at predicting GC safety and performance
in clinical use. It can thus limit poor results, particularly
from easily avoidable protocol design errors. The main
hurdle is the low number of validated models available.

Control
Glycemic control and decision support
GC using semi-automated (human-in-the-loop) or fully
automated insulin/nutrition dosing is a long-term re-
search area. Increasing automation brings technological
risk, but significantly reduces workload, human error,
and compliance risks. However, both approaches use the
same GC protocol, so this section focuses on the two
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main means of applying control. Specifically, looking
backward using a feedback approach, and looking for-
ward using a predictive approach. Both approaches can
be personalized using models, although personalization
is typically only used in predictive methods.

Feedback control
Feedback control takes blood glucose measurements and
other inputs, and suggests interventions in response to
the current state and/or changes since the last measure-
ment/intervention.
The most well-known feedback control systems are

paper-based or computerized clinical protocols, typic-
ally ranging from simple static sliding scales to more
complex dynamic scales. Static scales adjust insulin
based on the blood glucose level alone. They are the
simplest systems and offer no adaptability, with a “one
size fits all” approach, thus essentially assuming a linear
effect of increasing insulin with all patients assumed to
have similar insulin sensitivity [57]. Dynamic scales
change the insulin dose, based on the blood glucose
range the patient is in and prior responses. The Leuven
[7], Krinsley [9], and NICE-SUGAR [11] protocols are
dynamic scales. However, many do not directly consider
or control for nutrition, creating significant variation in
responses [58].
Proportional-derivative (PD) and/or proportional-inte-

gral-derivative (PID) controllers operate like complex
dynamic scales. Each insulin intervention is based on the
error in blood glucose from the target (P), the rate of
change of that error (D), and the area under the error
curve (I). The P, I, and D gains multiply these values
using the most recent blood glucose measurements to
calculate the insulin dose. PID control and similar
dynamic scales in critical care include the Endotool
(Monarch Medical, USA) [59], GRIP [60], Glucomman-
der (Glytec Systems, USA) [61], GlucoCare (Pronia
Medical, USA) [62], and GlucoStabiliser (Medical
Decision Network, USA) [63] systems commercially and
several research tools [13, 14, 64–66]. Advantages
include simplicity and easy automation. Disadvantages
include lack of significant patient specificity, which is
only seen indirectly via patient-specific glucose response
to insulin, and lack of input about nutrition or (often)
prior insulin doses. These disadvantages can lead to
greater variability across patients in larger, heteroge-
neous cohorts.
Overall, the performance of clinical protocols or dynamic

scales is better than that of static sliding scales, but is
exceeded by PID control. More successful protocols include
modifications around insulin on board, patient-specific re-
sponse, and/or physiological inputs. While these models
improve safety and performance, they have similar in-
creased clinical workload to systems without automation.

Unlike all other feedback controllers, SPRINT [5] con-
trols nutrition. Developed using virtual trials [47, 48],
this protocol modulates insulin and nutrition using im-
plicitly calculated patient-specific insulin sensitivity.
SPRINT is thus more patient specific and was the only
protocol associated with reduced glycemia, mortality,
and hypoglycemia. The main message from this study
[5] was the need to consider nutrition in safe, effective
GC, which model-based, predictive controllers can do.

Predictive control
Predictive control requires a model that takes current
measurements and other inputs, identifies patient-specific
model parameters to personalize the control, and uses
the patient-specific model to predict the outcome of
insulin/nutrition interventions to optimize glycemic
performance. The model is used directly in the control
loop.
Although several model-based and predictive controllers

have been tested in short or limited trials, only a few have
been used regularly in major trials [42] or as a standard of
care [50, 67]. There are two essential approaches: target to
value (TTV), GC to a specified glycemic target value; and
target to range or risk (TTR), GC to a specified risk of
hypoglycemia or hyperglycemia.
The LOGIC-Insulin system is a TTV approach and nu-

trition is clinically set and not controlled. The random-
ized, single-center LOGIC-I trial [42] compared standard
care at a unit with a good reputation for nursing-led GC
to LOGIC-Insulin model-based care with very good re-
sults. This performance was confirmed in a multicenter
trial [43], but it is not yet a standard of care in the original
study unit.
The TTV eMPC (B. Braun, Germany) [46] has been

used in several trials [66–69], controlling insulin infu-
sions and leaving nutrition clinically set. Compared to
standard care, eMPC does well [66, 69]. Comparisons
across centers and cohorts show similar, but not identi-
cal, performance [67, 68]. Workload is 14–18 measure-
ments/day, and thus higher than standard care. Thus,
eMPC provides improved care and safety, but increases
potential workload. It is used regularly in some ICUs.
STAR is the only TTR system and controls both insu-

lin and nutrition input [49, 70], using risk-based stochas-
tic forecasting [71]. It is the only GC system to directly
account for future variability. STAR has good perform-
ance and safety, including high times in intermediate
glycemic bands, approaching 80% with 10–13 measure-
ments/day [50]. It generalized well, with almost identical
glycemic outcomes across very different cohorts and
ICUs [50]. Notably, only eMPC and LOGIC-Insulin have
shown similar generalizability.
All three model-based systems noted have very low

rates of hypoglycemia (< 5% by patient) and are very
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generalizable. These results indicate that predictive,
model-based methods can overcome many of the hur-
dles that have hindered several other trials.
In summary, at this time, in addition to PID feedback

systems used in some hospitals in the USA [61–63],
three model-based predictive GC methods have proved
reliable over multiple patient types and centers. Two
methods are used as standards of care in multiple hospi-
tals, and one of these has a neonatal ICU version [72]
used as standard care and in a randomized trial [73].
Both methods consider nutrition, although only one
controls it, which may account for some differences in
performance. Overall, successful model-based GC takes
into account patient-specific factors. The patient’s meta-
bolic state evolves over the course of their illness, and
thus this approach provides adjustments as needed
within a given patient, as much as across patients.

Metrics and a recommended minimum standard
Glycemic reporting metrics are diverse [33]. Given signifi-
cant analyses linking organ failure and mortality to time in
target bands [6, 25, 27], time-in-band percentages should
be standard cohort and patient-level metrics. Unlike the
median (IQR) or mean (standard deviation), time in range
to a given threshold (e.g., patients with > 50% blood
glucose within 4.0–7.0 mmol/L) captures the central ten-
dency (mean or median) and variability (IQR, standard
deviation). Higher thresholds indicate tighter control for a
given cohort or patient in a given blood glucose range.
To assess any range of the several possible, the cohort

cumulative distribution function (CDF) or s-curve
should be reported. This approach enables any time in
range to be assessed. These CDFs can be aggregated for
each patient, and provide a data set with every possible
time-in-range outcome shown, from which comparisons
can be readily made.
For safety, the percentage blood glucose < 3.9 mmol/L

and the percentage of patients who have one or more
episodes of blood glucose < 2.2 mmol/L should be
reported.
Workload can be minimally reported as measure-

ments/day, because measurements are a primary source
of workload [31], but could add other GC-related effort
[30].
All of these metrics would include all patients for

all days of stay, from the start of GC. These recom-
mendations provide a minimal data set for regular
and standardized comparison across cohorts, trials,
and publications. Any other analyses or data reporting
would be additional to this minimal set.

Summary recommendations
Based on this overview and analysis of the current
state-of-the-art for GC in critically ill patients, the

following recommendations are made to advance the
safety, quality, consistency, and clinical uptake:

1. Patient-specific model-based GC including closed-
loop systems, increasingly enabled by the penetra-
tion of computational technology into the ICU, can
improve the quality of GC:
a. models should be self-validated and cross-

validated;
b. initial assessment and optimization in validated

virtual trials should be considered for new GC
methods;

c. final validation of safety and performance must
come in clinical (pilot and/or randomized) trials.

2. GC could consider nutrition as an input certainly,
and possibly as a controlled clinical input set
against international guideline goal feeds. No GC
care should be “carbohydrate blind”, even though
closed-loop systems may operate without nutri-
tional input.

3. No GC trial should be performed without first
conducting a pilot trial in each involved ICU, which
demonstrates that safe, effective GC can be
obtained to the desired level for 80% or more of
patients, unless an algorithm is used that has
already been validated in a multicenter context.
Each potential trial center must prove it can safely
and consistently achieve the desired level of GC
stated in the trial plan.

4. To enable comparison and analysis, all GC
reporting should have a minimum standardized set
of data reporting performance, safety, and workload,
including:
a. performance—time in desired target band;
b. safety—number of patients experiencing severe

hypoglycemia (blood glucose < 2.2 mmol/L) or
percentage blood glucose < 3.9 mmol/L;

c. workload—average number of staff-taken or au-
tomated (if applicable) glucose measurements
per patient per day (standard deviation) or me-
dian (IQR);

d. performance (optional)—CDFs of cohort
glycemia, which provide all possible time-in-
target ranges, enabling far easier comparison;

e. performance (optional)—CDFs of per-patient
glycemia.

5. ICU clinicians should press for increasing
automation and access to sensor and infusion pump
data for independent processing of GC methods to
increase safety and reduce workload.

Conclusions
Glycemic control has proven difficult to safely and
effectively achieve for all patients, where modeling and
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model-based methods have offered a potentially signifi-
cant avenue to achieving safe, effective control. In this
review, leading experts discuss this evidence, report rele-
vant reports from medicine and engineering, and suggest
how safe, effective GC can be achieved in critically ill
patients, ultimately seeking to mimic pancreatic func-
tion. The review concludes with concise recommenda-
tions to advance the safety, quality, consistency, and
clinical uptake of GC in critical care, providing a road-
map toward better, more personalized metabolic care
and improved patient outcomes.
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