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Abstract

Background: Intravenous fluids may contribute to lower haemoglobin levels in patients with septic shock. We
sought to determine the relationship between the changes in haemoglobin concentration and the volume of
intravenous fluids administered during resuscitation from septic shock.

Methods: We performed a retrospective cohort study of patients enrolled in the Australasian Resuscitation in
Sepsis Evaluation (ARISE) trial who were not transfused red blood cells (N = 1275). We determined the relationship
between haemoglobin concentration, its change over time and volume of intravenous fluids administered over 6, 24
and 72 h using univariate and multivariate analysis.

Results: Median (IQR) haemoglobin concentration at baseline was 133 (118–146) g/L and decreased to 115 (102–127)
g/L within the first 6 h of resuscitation (P < 0.001), 110 (99–122) g/L after 24 h, and 109 (97–121) g/L after 72 h. At the
corresponding time points, the cumulative volume of intravenous fluid administered was 1.3 (0.7–2.2) L, 2.9 (1.8–4.3) L
and 4.6 (2.7–7.1) L. Haemoglobin concentration and its change from baseline had an independent but weak
association with intravenous fluid volume at each time point (R2 < 20%, P < 0.001). After adjusting for covariates, each
litre of intravenous fluid administered was associated with a change in haemoglobin concentration of − 1.0 g/L (95%
CI −1.5 to −0.6, P < 0.001) at 24 h and − 1.3 g/L (− 1.6 to − 0.9, P < 0.001) at 72 h.

Conclusions: Haemoglobin concentration decreases during resuscitation from septic shock, and has a significant but
weak association with the volume of intravenous fluids administered.
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Background
Intravenous fluid administration is a cornerstone in the
resuscitation from septic shock [1]. Circulating blood
volume may be deficient in septic shock due to plasma
extravasation through compromised endothelium [2, 3],
alteration of vascular muscle tone leading to redistribu-
tion of blood and expanded venous capacitance [4, 5]
and other sources of fluid loss such as vomiting, diar-
rhoea, sweating and insensible losses, thus justifying
such intravenous fluid therapy.
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Haemoglobin is a large intravascular molecule that, in
the absence of bleeding, typically remains within the cir-
culation. An increase of haemoglobin concentration in
septic shock, without a red cell transfusion, may identify
a relative deficit of circulating plasma volume. Con-
versely, a decrease in haemoglobin concentration may
represent an accumulation of intravascular plasma vol-
ume following intravenous fluid administration [6].
An increased haemoglobin concentration is one of the

most consistent changes seen following induction of sepsis
in many experimental animal models [7–12], and some re-
searchers have titrated intravenous fluids according to this
haemoconcentration [7, 13]. In the clinical setting, red cell
concentration has been recommended as a guide for fluid
replacement in systemic inflammatory diseases such as
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pancreatitis [14–16] and burn injury [17]. However, few
clinical studies have specifically assessed changes in
haemoglobin concentration during resuscitation from sep-
tic shock [18, 19], and the extent to which this may be
related to intravenous fluid volume remains uncertain.
The Australasian Resuscitation in Sepsis Evaluation

(ARISE) trial evaluated “early goal-directed therapy”
(EDGT) against “usual care” in patients with early septic
shock [20, 21]. From the patients enrolled in ARISE, we
sought to describe the relationship between haemoglo-
bin concentration and its change over time with the
volume of intravenous fluids. In particular, we hypothe-
sised that the volume of administered fluid would have
significant correlation with a decline in haemoglobin
concentration. A secondary objective was to determine
the association between baseline haemoglobin, early
changes in its concentration and patient outcomes.

Methods
Study design
We conducted a retrospective analysis of a patient co-
hort from the ARISE trial. Full details of the ARISE trial
have been published elsewhere [20, 21]. In brief, the
ARISE trial was an Australian and New Zealand Inten-
sive Care Society (ANZICS) Clinical Trials Group and
Australasian College for Emergency Medicine endorsed,
international multi-centre randomised controlled study,
which enrolled 1600 patients presenting to the Emer-
gency Department with early septic shock between 2008
and 2014. Patients with suspected or confirmed infection
and two or more criteria for systemic inflammatory re-
sponse were enrolled if they had (i) hypotension (systolic
blood pressure less than 90 mmHg or mean arterial
pressure less than 65 mmHg, despite at least 1000 mL of
intravenous fluids administered within 60 min) or (ii)
blood lactate of 4 mmol/L or greater. Patients were ran-
domly allocated to receive EGDT or usual care and had
physiological and treatment parameters (including
haemoglobin concentration and intravenous fluids)
monitored for 72 h. The primary outcome was mortality
at 90 days.

Study cohort
From the ARISE dataset, we excluded patients who refused
to consent to participate, received a red blood cell transfu-
sion during the 72 h study period, had primary polycythae-
mia, or had a concurrent diagnosis of acute bleeding.
Patients with a co-diagnosis of pulmonary oedema at enrol-
ment were also excluded, given this is known to alter circu-
lating red blood cell concentration [22].

Variables and outcomes
Haemoglobin concentration was measured at study base-
line (0 h), hourly as clinically indicated during the next 6 h
of resuscitation, and again after 24 and 72 h. The volume
of intravenous fluids administered over each time interval
(0 to 6 h, 0 to 24 h, 0 to 72 h) was recorded. Intravenous
fluids included crystalloids (0.9% saline, 5% dextrose, 4%
dextrose + 0.18% saline, Hartmann’s solution), colloids (al-
bumin, Gelofusine®, starch, other) and blood products not
containing red blood cells.
Patient outcomes included duration of invasive mech-

anical ventilation, length of stay in the ICU and hospital
and mortality after 28 and 90 days.

Analysis
Data are presented as number (percentage), mean
(standard deviation, SD) for normally distributed data,
or median (interquartile range, IQR) otherwise, with
group comparisons by the chi-squared test for equal
proportion, Student t test or Wilcoxon rank-sum test,
respectively. Mean differences are presented with 95%
confidence intervals (95% CI) and P value. Ventilation
duration and ICU and hospital length of stay were mark-
edly skewed, so these variables were log-transformed
prior to analysis and are reported as the percentage
change (95% CI) derived from the ratio of geometric
means. Univariate and multivariate relationships were
assessed by linear and logistic regression for continuous
and binary outcomes; longitudinal data with repeated
measures were assessed using general estimating equa-
tions. Model effects are presented as the point estimate
(95% CI and P value); R-squared values are included for
ordinary least squares regression. There was no imput-
ation for missing data.
Multivariable models were adjusted for the a priori de-

fined baseline confounders Acute Physiology and
Chronic Health Evaluation II (APACHE-II) score, age,
gender, weight, Charlson Comorbidity Score (0, 1–2, ≥3),
volume of intravenous fluid administered prior to enrol-
ment, study group (EGDT or usual care), systolic blood
pressure, serum lactate and creatinine, use of a vasoactive
agent at baseline (noradrenaline, adrenaline, metaraminol,
dopamine, dobutamine, vasopressin, other) and site of in-
fection (blood, lung, abdomen, urinary, central nervous
system, soft tissue, other, unknown). Variables with a
P value <0.05 were included in a multivariable model
analysis.
Sensitivity analyses incorporated the proportion of fluids

as crystalloid, central venous pressure (dichotomised as
< 10 vs. ≥ 10 mmHg), lactate (< 2 vs. ≥ 2 mmol/L), fluid
balance after 72 h (total intravenous fluids administered
less the total volume of urine collected), serum creatinine
and bilirubin (at 72 h).
Exploratory analyses were conducted to determine if

the change in haemoglobin concentration at each hour
during the initial 6 h of resuscitation was associated with
the volume of intravenous fluids, the type of fluid



Table 1 Cohort characteristics at enrolment

Characteristic Cohort (N = 1275)

Age – years (IQR) 65 (51–75)

Male – N (%) 782 (61.3%)

Weight – kg (IQR) 77 (65–90)
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(colloid or crystalloid), insertion of central venous or ar-
terial cannulae, mechanical ventilation (invasive and
non-invasive) or the use of a vasoactive infusion. Ana-
lysis was performed with Stata MP/14.2 and Prism 7
software, and a two-sided P value of 0.05 was used to in-
dicate statistical significance.
Charlson Comorbidity Index – score (IQR) 1 (0–2)

APACHE-IIa – score (IQR) 14 (10–19)

Receiving mechanical ventilation – N (%)

Invasive 105 (8.2%)

Non-invasive 84 (6.6%)

Systolic pressure – mmHg (IQR) 95 (85–110)

Receiving a vasoactive agent infusionb – N (%) 187 (14.7%)

Intravenous fluids administered prior to enrolmentc

Volume – L (IQR) 2.5 (1.7–3.3)

Volume per weight – mL/kg (IQR) 31.8 (19.4–45.2)

Serum lactate – mmol/L (IQR) 3.9 (2.1–5.2)

Serum creatinine – μmol/L (IQR) 128 (93–195)

Randomisation groupd – N (%)

Early goal directed therapy 614 (48.2%)

Usual care 661 (51.8%)

Source of sepsis – N (%)

Blood 110 (8.6%)

Lung 452 (35.5%)

Abdomen 98 (7.7%)

Urinary 261 (20.5%)

Central nervous system 16 (1.3%)

Soft tissue 127 (10.0%)

Other 98 (7.7%)

Unknown 113 (8.9%)
Results
Cohort description
Of the 1600 patients enrolled in ARISE, those who re-
fused to consent to participate (N = 9), had received
transfused red cells (N = 281), had polycythaemia (N = 4),
had active gastrointestinal bleeding (N = 1) or pulmonary
oedema (N = 30) were excluded. This left a cohort of 1275
patients whose demographics, clinical characteristics,
treatments provided and outcomes are summarised in
Tables 1 and 2.
The haemodynamic profile of the cohort during the 72-h

period is outlined in Additional file 1: Figure S1. At base-
line, the median haemoglobin concentration was 133
(118–146) g/L (137 (121–150) g/L in male participants ver-
sus 127 (115–139) g/L in female participants (P < 0.001)).
Haemoglobin concentration was measured in 808 (63.3%)
patients during the first 6 h of resuscitation, within which
time it decreased to 115 (103–127) g/L (P < 0.001). After
24 h and 72 h, the median haemoglobin concentration was
110 (99–122) and 109 (97–121), respectively (Fig. 1a).
Haemoglobin concentration did not differ between
ARISE study groups at any time point in this cohort
(Additional file 2: Figure S2). The median cumulative vol-
ume of intravenous fluids administered was 1.3 (0.7–2.2) L
during the first 6 h of resuscitation, 2.9 (1.8–4.3) L after
24 h and 4.6 (2.7–7.1) L after 72 h (Fig. 1b).
aAcute Physiology and Chronic Health Evaluation-II (APACHE-II) score was
calculated from data at randomisation into the ARISE study group
bInfusion of vasoactive agents included noradrenaline, adrenaline,
metaraminol, phenylephrine and/or dopamine for at least 30 min prior
to enrolment
cTotal intravenous fluid volume prior to enrolment included those given by
ambulance personnel and in hospital
dThere were 796 patients randomised to early goal-directed therapy (EGDT)
and 804 to usual care in the ARISE study. Exclusion criteria for this cohort
study applied to 182 from the EGDT study group and 143 from the usual
care group
Association between haemoglobin and intravenous fluid
volume
Patients with a higher haemoglobin concentration at
baseline received slightly more intravenous fluids. For
each extra gram of haemoglobin (per litre) at baseline,
6 mL more intravenous fluid was administered over 6 h,
13 mL over 24 h and 22 mL over 72 h. These associa-
tions were significant but very weak (R2 < 5%, P < 0.001)
in univariate and multivariate analysis at each time point
(Additional file 3: Table S1).
The change in haemoglobin concentration from base-

line was weakly associated with the volume of intravenous
fluids administered in 24 h and 72 h (Fig. 2). Significant
covariates included age, weight, APACHE-II score, lactate,
study group and use of vasoactive agents at baseline. After
adjusting for these covariates, each litre of intravenous
fluid administered was associated with a statistically sig-
nificant, but very small decrease in haemoglobin concen-
tration during 24 h and 72 h (Table 3).
The type of fluid administered influenced the
decline in haemoglobin concentration. Patients receiv-
ing only crystalloid solutions during the 72-h period
(N = 736, 57.7%) maintained a haemoglobin concentra-
tion that was 5 (2–7) g/L higher than in those who
received a combination of crystalloid and colloid
fluids (P < 0.001). In other pre-specified sensitivity
analyses, the association between haemoglobin con-
centration and intravenous fluid volume was not sig-
nificantly altered by central venous pressure, fluid
balance, serum lactate, creatinine or bilirubin.



Table 2 Treatments provided during the 72 h following
enrolment and outcomes of the study cohort

Treatments and outcomes Cohort
(N = 1275)

Treatments

Central venous cannula inserted – N (%) 1053 (82.6%)

Arterial cannula inserted – N (%) 1082 (84.9%)

Admitted to ICU – N (%) 1092 (85.6%)

Received surgery – N (%) 117 (9.2%)

Received mechanical ventilationa – N (%) 480 (37.6%)

Received an infusion of a vasoactive agentb – N (%) 858 (67.3%)

Duration of vasoactive agent infusion – hours (IQR) 29 (12–57)

Outcomes

Invasive ventilation

Number that received invasive ventilationc – N (%) 352 (27.6%)

Duration of invasive ventilation – hours (IQR) 61 (22–163)

Length of stay – days (IQR)

ICU 2.6 (1.3–5.0)

Hospital 8.1 (4.9–15.3)

Mortality – N (%)

ICU 109 (8.5%)

Hospital 162 (12.7%)

Day 28 163 (12.8%)

Day 90 193 (15.1%)
aMechanical ventilation included invasive and non-invasive modes
bInfusion of vasoactive drugs included noradrenaline, adrenaline, metaraminol,
phenylephrine and/or dopamine for at least 30 min
cInvasive mechanical ventilation at any time during hospital admission
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Exploratory analysis of the change in haemoglobin at
any time during the first 6 h revealed a weak association
with intravenous fluid volume (R2 < 10%, P < 0.001)
(Additional file 4: Figure S3), but not with any other
resuscitation intervention analysed (Additional file 5:
Figure S4).
Association between haemoglobin and patient outcomes
Haemoglobin concentration at baseline had no relation-
ship with mortality, even after adjusting for age, gender,
APACHE-II score and serum lactate. However, a de-
crease in haemoglobin concentration from baseline was
associated with worse patient outcomes. For each 10 g/L
decrease in the haemoglobin concentration during 72 h,
duration of invasive ventilation, ICU stay and hospital length
of stay were longer by 14.4% (6.3–22.5%, P = 0.001), 16.5%
(13.1–19.9%, P < 0.001) and 8.1% (5.2–10.9%, P < 0.001)
respectively. These associations remained significant when
adjusted for age, gender, APACHE-II score, Charlson Co-
morbidity Score, source of sepsis, lactate and vasopressor
use at baseline. For each 10 g/L decrease in the haemoglobin
concentration, the adjusted odds ratio of death was 1.25
(1.09–1.43, P = 0.001) at day 28, and 1.19 (1.05–1.39,
P = 0.005) at day 90.

Discussion
Key findings
In this large cohort of patients with septic shock,
haemoglobin concentration fell during the first 6-h
period of resuscitation and remained low during a
period of 72 h. This decline was significantly but weakly
associated with the volume of intravenous fluid adminis-
tered, with such volume accounting for less than 20% of
the observed change in haemoglobin concentration, and
a slightly greater dilutional effect with colloids. More-
over, we observed significant but very weak independent
association between the baseline haemoglobin concentra-
tion and the volume of fluids subsequently administered.
Finally, we observed that the decline in haemoglobin dur-
ing the first 24 h and 72 h was independently associated
with increased duration of ventilation, length of ICU and
hospital stay and mortality.

Comparison with previous studies
The observed decrease in haemoglobin concentration
and the magnitude of change during resuscitation are in
keeping with, and markedly expand the findings of other
smaller studies. A single-centre study of 85 patients with
septic shock, reported that haemoglobin concentration
decreased by a mean of 16 g/L between samples taken in
the emergency department and the first hour of ICU ad-
mission [18], and only a weak association with the
amount of intravenous fluids administered. In another
single-centre study of 91 heterogeneous ICU patients
without evident blood loss, haemoglobin concentration
decreased, mostly during the early phase of ICU admis-
sion, and was not associated with fluid balance [19].

Possible pathophysiology
The prompt decline in haemoglobin concentration dur-
ing resuscitation and the weak association with intraven-
ous fluids implies that other factors are involved. No
iatrogenic factors were identified in our study. Repeated
blood sampling may have contributed to haemoglobin
loss [19, 23]; however, most blood samples had already
been taken at study baseline, and the decrease in haemo-
globin concentration was evident within the first hour of
resuscitation. A blunted erythropoietin response to an-
aemia, eryptosis (premature death of red blood cells),
neocytolysis (removal of newly formed erythrocytes)
[24], injury to red cell membranes and haemolysis can
occur in sepsis [25]. These may have contributed to the
decline in haemoglobin. In vitro studies have also illus-
trated that noradrenaline can directly inhibit erythropoi-
esis [26]. However, these processes would seem unlikely
to explain the rapid early decrease in haemoglobin
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Fig. 1 a Haemoglobin concentration in a cohort of 1275 patients with
septic shock enrolled in the ARISE study (who were not transfused red
blood cells). Haemoglobin was measured at baseline (0 h), as required
over the next 6 h and then again at 24 h and 72 h. Haemoglobin
concentration decreased over time (P < 0.0001). b Cumulative volume
of intravenous fluids administered. Fluid administered before
enrolment into the ARISE study were not incorporated. Solid
lines represent the median. N, number of patients with haemoglobin
concentration recorded

a

b

Fig. 2 Regression line shows the relationship between the volume
of intravenous fluids administered and the corresponding change in
haemoglobin concentration during 24 h (a), and 72 h (b). N, number
of patients with data on haemoglobin concentration and volume of
fluids administered

Table 3 Association between volume of intravenous fluids
administered and the change in haemoglobin (Hb) concentration

Change in Hb
over 24 h

Univariate analysis
−1.0 (−1.4 to −0.6) Hb g/L per litre of fluid administered
R2 = 2.5%, P < 0.001

Multivariate Analysis *
− 1.0 (− 1.5 to − 0.6) Hb g/L per litre of fluid administered
R2 = 9.3%, P < 0.001

Change in Hb
over 72 h

Univariate analysis
− 1.5 (− 1.8 to − 1.2) Hb g/L per litre of fluid administered
R2 = 8.9%, P < 0.001

Multivariate Analysis #

− 1.3 (− 1.6 to − 0.9) Hb g/L per litre of fluid administered
R2 = 17.7%, P < 0.001

*Significant covariates were weight, APACHE-II, lactate, receiving vasoactive
agents at baseline and study group. Complete data was available for 776 patients
#Significant covariates were age and serum lactate. Complete data was available
for 594 patients
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concentration noted. Furthermore, serum bilirubin con-
centration as a marker of haemolysis was unchanged
over time and had no relationship with the change in
haemoglobin. Alternative mechanisms may involve
changes to the endothelial glycocalyx during sepsis [27]
and interstitial fluid movement into the circulation to
increase vascular volume [28]. Finally, neuroendocrine
responses may also lead to haemodilution as they favour
sodium and water retention at times of inadequate
circulation.
The type of intravenous fluid used influenced the

change in haemoglobin concentration. Patients given
only crystalloid fluid maintained slightly higher haemo-
globin compared with those given a mixture of crystal-
loid and colloid fluids. While this effect was very small,
and only noted after 72 h, this observation would sup-
port the premise that a greater proportion of colloid
solutions remain intravascular [29].
Unlike the increased haemoglobin concentrations noted

in many experimental models of sepsis, we did not
observe markedly high concentrations in this cohort
of patients. Although in this study we did not control
for timing and severity of disease, it suggests there
may be species-specific differences in the response to
sepsis. Experimental sepsis models may have greater



Maiden et al. Critical Care  (2018) 22:118 Page 6 of 8
loss of plasma fluid or liberation of red blood cells
from reticuloendothelial organs such as the spleen,
liver and bone marrow.

Clinical implications
Our findings imply that an early decrease in haemoglo-
bin concentration in patients with septic shock is ubiqui-
tous and largely due to factors unrelated to the
administered volume of intravenous fluid. They also
imply that the decrease in haemoglobin concentration is
independently associated with longer length of stay (ICU
and hospital) and greater mortality (day 28 and day 90)
with the adjusted odds ratio for 28-day mortality in-
creased by 25% for only a modest (10 g/L) decrease in
haemoglobin. Accordingly, the early decline in haemo-
globin concentration in septic shock appears to be a
clinically important marker of illness severity.

Strengths and limitations
This is the largest and most detailed study to have
specifically assessed the change in haemoglobin concen-
tration in patients resuscitated from septic shock. The
study cohort was recruited from multiple hospitals, rela-
tively few patients were excluded for having received red
blood cells and no patients were lost to follow up. Clin-
ically relevant confounders, including ARISE study
group allocation, were considered in multivariate ana-
lyses. Estimates of association were relatively precise,
particularly given the large study cohort. The findings
are generalisable to other patients with septic shock who
are not bleeding, but not necessarily to patients with
other critical illnesses.
A number of study limitations need to be considered.

This post-hoc analysis was not defined in the study
design for ARISE. This exploratory analysis contains
multiple comparisons and is at risk of identifying ran-
dom associations. Nevertheless we did not identify any
association that would be considered spurious, and the
low P values make a type 1 error unlikely. Measures of
red blood cell concentration (such as haematocrit) may
better reflect haemoconcentration or haemodilution
than haemoglobin. While haematocrit was assessed in
ARISE, most study sites did not measure it. Thus,
haemoglobin concentration was used in this study.
Other markers of haemolysis (e.g. lactate dehydrogenase)
or the marrow response to anaemia (e.g. reticulocytes)
were not available. Volume kinetic studies may have pro-
vided insights into the distribution of administered
fluids, but this type of analysis was not possible with the
data available. Finally, incomplete data on urine volume
precluded reliable estimates of fluid balance and changes
in patient weight were not available for the cohort. How-
ever, sensitivity analysis using the available fluid balance
data did not alter the interpretation of the study.
Conclusions
Haemoglobin concentration decreases in patients resus-
citated from septic shock. This is apparent early in re-
suscitation and persists over the following 72 h, but is
only weakly associated with the volume of intravenous
fluid administered. Other disease processes are likely to
account for most of the change in haemoglobin concen-
tration in septic shock, a phenomenon independently
associated with increased length of hospital stay and
mortality.
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