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Abstract

Background: Haemorrhagic shock is the leading cause of early preventable death in severe trauma. Delayed treatment
is a recognized prognostic factor that can be prevented by efficient organization of care. This study aimed to develop
and validate Red Flag, a binary alert identifying blunt trauma patients with high risk of severe haemorrhage (SH), to be
used by the pre-hospital trauma team in order to trigger an adequate intra-hospital standardized haemorrhage control
response: massive transfusion protocol and/or immediate haemostatic procedures.

Methods: A multicentre retrospective study of prospectively collected data from a trauma registry (Traumabase®) was
performed. SH was defined as: packed red blood cell (RBC) transfusion in the trauma room, or transfusion ≥ 4 RBC in the
first 6 h, or lactate ≥ 5 mmol/L, or immediate haemostatic surgery, or interventional radiology and/or death
of haemorrhagic shock. Pre-hospital characteristics were selected using a multiple logistic regression model in
a derivation cohort to develop a Red Flag binary alert whose performances were confirmed in a validation cohort.

Results: Among the 3675 patients of the derivation cohort, 672 (18%) had SH. The final prediction model included five
pre-hospital variables: Shock Index ≥ 1, mean arterial blood pressure ≤ 70 mmHg, point of care haemoglobin
≤ 13 g/dl, unstable pelvis and pre-hospital intubation. The Red Flag alert was triggered by the presence of
any combination of at least two criteria. Its predictive performances were sensitivity 75% (72–79%), specificity
79% (77–80%) and area under the receiver operating characteristic curve 0.83 (0.81–0.84) in the derivation
cohort, and were not significantly different in the independent validation cohort of 2999 patients.

Conclusion: The Red Flag alert developed and validated in this study has high performance to accurately
predict or exclude SH.
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Background
Haemorrhage remains the leading cause of early prevent-
able death in severe trauma [1, 2]. A multidisciplinary ana-
lysis showed that approximately 2.5% of the deaths in a
trauma centre are preventable or potentially preventable.
Among the main causes were haemorrhage (39%) and mul-
tiple organ failure (28%), often a consequence of haemor-
rhagic shock. The main reasons for preventable death due
to haemorrhage were delayed recognition and management
[3]. Organizational optimization is essential to control
bleeding as quickly as possible and to reduce patient mor-
tality [4–6]. It is therefore crucial to identify during the pre-
hospital phase those patients at high risk of severe haemor-
rhage (SH) to quickly activate a specific intra-hospital stan-
dardized haemorrhage control response, connecting the
multispecialty trauma team, blood bank, transfusion proto-
cols, interventional radiology and surgery [7].
Thus, to address efficiently the challenge of SH and

shape the response, the design of a haemorrhage specific
alert is necessary. Standard triage algorithms are designed
to guide severe trauma patients to appropriate trauma
centres [8, 9] and trigger trauma team activation [10]. The
pre-hospital MGAP score (mechanism, Glasgow coma
scale, age and arterial pressure) [11] was developed to pre-
dict mortality but showed a proper ability to predict SH
(area under the curve 0.7, 95% CI 0.66–0.73) [12]. Estab-
lished haemorrhage scores predict the need for massive
transfusion [13–15]. The TASH score is probably one of
the most widely cited scores to predict massive transfu-
sion [16]. However, massive transfusion only applies to a
minority of patients, whereas a timely integrative haemo-
static strategy could decrease overall transfusion require-
ments. The aforementioned massive transfusion scores
are only validated with intra-hospital data, which renders
their application questionable during the pre-hospital
phase. A “Code Red” policy has been implemented in
trauma centres across the UK [17, 18] with the pre-arrival
organization seen as an integral part of the severe haemor-
rhage pathway [19]. This activation code consists of three
criteria (suspicion or evidence of active haemorrhage, sys-
tolic arterial blood pressure < 90 mmHg, failure to re-
spond to a fluid bolus) but its predictive accuracy has not
yet been evaluated. On a pragmatic standpoint, this type
of alert is of utmost importance for trauma centres since
emergency care may compete with elective care because
of common facilities and workforces.
The aim of our study was to develop and validate an

easy-to-use pre-hospital prediction tool for SH in blunt
trauma patients derived from a prediction model. This
tool is meant to be used as a binary Red Flag alert to acti-
vate a specific intra-hospital severe haemorrhage response.
The Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
statement was followed to report its results [20].

Methods
Trauma centres and registry
This multicentre observational study used the data col-
lected prospectively from a trauma registry (Trauma-
base®, traumabase.eu) shared between the six trauma
centres of the Paris area in France. These six centres
progressively joined the registry between January 2011
and June 2015. Since then, data collection is exhaustive
and covers the whole administrative area around Paris,
Ile-de-France. The Traumabase® obtained approval from
the Advisory Committee for Information Processing in
Health Research (CCTIRS, 11.305bis) and from the Na-
tional Commission on Informatics and Liberties (CNIL,
911461) and meets the requirements of the local and na-
tional ethics committee (Comité de Protection des Per-
sonnes, Paris VI). The structure of the database integrates
algorithms for consistency and coherence. Data monitoring
is performed by a central administrator. Sociodemographic,
clinical, biological and therapeutic data (from the pre-
hospital phase to discharge from the intensive care unit)
are systematically collected for all trauma patients. A de-
scription of the Emergency Medical System (EMS) and the
Trauma System and the characteristics of the Ile-de-
France can be found in Hamada et al. [21]. In France,
a 24/7 available dispatching physician located in a
centralized call centre decides which emergency vec-
tor, either a paramedic-staffed ambulance or a
physician-staffed mobile intensive care unit, is to be
deployed on the basis of the trauma bystanders’ call.
Patients brought to dedicated trauma rooms in
trauma centres are suspected to be major trauma by
the pre-hospital team and are necessarily transported
by a physician-staffed ambulance. All patients trans-
ported to the trauma rooms of the participating cen-
tres were included in the registry (Traumabase®).
Our methodology used a three-step approach: devel-

oping a model, deriving a score and transforming the
score into a binary alert by choosing the cut-off value.

Patient selection
Every trauma patient registered in the Traumabase® since
January 2011 was included in the study. Patients were ex-
cluded if they were admitted after secondary transfer, after
penetrating trauma or after pre-hospital traumatic cardiac
arrest, or if no pre-hospital data were available. Two sub-
samples were constituted: the derivation cohort which in-
cluded all patients admitted from January 2011 to May
2015, and the validation cohort which included all patients
admitted from June 2015 to November 2016 (Fig. 1).

Definition of severe haemorrhage
Patients were retrospectively considered to present SH
on admission to the trauma centre if any of the follow-
ing criteria was present: need for any packed red blood

Hamada et al. Critical Care  (2018) 22:113 Page 2 of 12



cell (RBC) transfusion upon arrival in the resuscitation
room, transfusion of 4 packed RBCs or more within the
first 6 h [22, 23], blood lactate concentration ≥ 5 mmol/L
upon arrival [24], need for immediate haemostatic sur-
gery or interventional radiology before complete injury
assessment by whole-body CT scan or death from haem-
orrhagic shock [25]. These criteria were chosen to reflect
the heterogeneity and complexity of SH clinical presenta-
tion as there is no consensual definition in the literature.
The need for an immediate haemostatic intervention was

chosen as a reflection of haemorrhage intensity, and for
further anticipation of the need of haemostatic resource
mobilization. The resuscitation room transfusion criter-
ion and death secondary to haemorrhagic shock were
chosen to select the most severe and actively bleeding pa-
tients. The transfusion-related criteria represented the
dynamic and evolving character of bleeding and need for
transfusion over the first hours. Massive transfusion is
usually defined as 10 packed RBCs in the first 24 h [26]
but this definition is currently questioned [23, 27] and

Fig. 1 Flowchart of the study. SH severe haemorrhage
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other criteria (transfusion requirements in the first 6 h,
transfusion of at least 3 packed RBCs in 1 h or of 5
packed RBCs in 4 h) have been shown to be better correl-
ate with mortality [22, 27]. The transfusion-related cri-
teria were chosen in this study to be a good balance
between these different definitions. Finally, the criterion
concerning blood lactate level at admission quantified the
magnitude of tissue hypoperfusion related to haemor-
rhage. Apart from metabolic sources for elevated blood
lactate level (e.g. alcohol, fast, ethylene glycol), a level
higher than 5 mmol/L during the first 24 h is a risk factor
for mortality or multiple organ failure [28–30]. For each
patient, the presence or absence of SH at admission was
adjudicated by SRH, initially blinded to the pre-hospital
variables.

Potential pre-hospital predictors
Thirteen predictors of SH were selected or computed
using exclusively pre-hospital data from management on
scene and during transport. These criteria were selected
based on their clinical significance and ease of use in the
pre-hospital time-critical setting: age, sex, minimal sys-
tolic, diastolic and mean arterial blood pressure (SBP,
DBP and MBP), maximal heart rate (HR), minimal oxy-
gen saturation (SpO2), minimal Glasgow Coma Scale
(GCS), clinically unstable pelvis, early on-scene point-of-
care haemoglobin concentration [31], tracheal intubation
and vasopressor administration. The maximal Shock
Index was calculated according to the formula: SI =
maximal HR / minimal SBP [32].

Other measured variables
Demographic data, trauma characteristics and outcome
were also recorded. For the Simplified Acute Physiology
Score (SAPS), the worst value of each variable over the
first 24 h was taken into account. The Abbreviated In-
jury Scale (AIS) version 2005 and the Injury Severity
Score (ISS) were calculated when the whole-body injury
assessment was completed. The expected probability of
survival was calculated using the Trauma and Injury Se-
verity Score (TRISS) with the most recent coefficients
[33, 34]. Due to missing data, the TRISS was computed
by giving a respiratory rate of 20/min in all patients [35].
The MGAP score was computed as a comparison basis
for SH prediction [11].

Sample size
We used the entire large cohort (7945 patients) as there
is no generally accepted approach to estimate the sample
size requirements for derivation and validation studies of
risk prediction models. The number of events in our
sample far exceeds the required number established
using previously published rules (10 events per candidate
variable for derivation studies and at least 100 events for

validation studies) and therefore is expected to provide
robust estimates [20].

Statistical analysis
Continuous data were described as mean ± standard de-
viation or median (quartiles 1–3) according to their dis-
tribution, and categorical variables as count
(percentages). The derivation cohort was used to train
the prediction model. Univariate analyses were per-
formed to evaluate crude associations between pre-
hospital data and the presence of SH using chi-square
and Student’s t tests (or the Mann–Whitney test when
necessary) depending on the variable type. Each variable
with p < 0.2 was retained as a candidate variable and
Spearman correlation coefficients were computed to
evaluate collinearity (r > 0.8). Candidate continuous vari-
ables were dichotomized using receiver operating char-
acteristic (ROC) curves and Youden’s index [36] to
identify the cut-off value, except for SpO2 for which the
clinically relevant cut-off value of ≤ 90% was chosen.
Then, candidate binary variables were entered altogether
into a multivariate logistic regression model and se-
lection was performed using a backward stepwise pro-
cedure to optimize the Akaike criterion. All variables
were tested for pairwise univariate interactions. Mul-
tiple imputation via a chained equation was used to
handle missing data (R PACkage “mice” V 2.3 [37]).
A maximum of 5% missing data was observed for the
imputed variables. Model calibration was assessed
using the Hosmer and Lemeshow statistic [38]. Model
discrimination was assessed using the ROC curve
(area under the ROC curve (AUC)) and a bootstrap
methodology (1000 samples) [39] was used to quan-
tify any optimism (averaged difference between the
apparent AUC of the model developed on each boot-
strap sample and its AUC on the original sample) in
the final prediction model.
To derive the Red Flag binary alert from this model, a

score was computed for each patient of the derivation
cohort using various combinations of the number of
points attributed to each variable that remained in the
final prediction model (one point for each variable or
two points for variables with a higher model coefficient
than the others). Their predictive accuracy was evaluated
using the AUC and the Youden’s index was used to iden-
tify the cut-off value for the Red Flag binary alert with
the best balance between simplicity of use and predictive
performance assessed using sensitivity, specificity, posi-
tive and negative predictive values (PPV and NPV) and
positive likelihood ratio (+LR). Contingency mosaics
were drafted for the values around the determined cut-
off value.
Finally, the predictive accuracy of the final prediction

model and the predictive performance of the resulting
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Red Flag binary alert were independently assessed in the
validation cohort. Model calibration was graphically
checked using a calibration plot representing the agree-
ment between risks of SH predicted by the model and
observed proportions in the validation cohort.

Discrimination was explored using the AUC ROC. A
bootstrap methodology was used to compute the confi-
dence interval (CI) of the AUCs (R package “pROC” V1.
10 [40]). The AUC of Red Flag was compared to the
AUC of the MGAP score. All tests that were two-sided

Table 1 Derivation and validation cohort characteristics

Derivation Validation Comparison

SH
(n = 672)

No SH
(n = 3003)

SH
(n = 415)

No SH
(n = 2584)

SH
p

No SH
p

Demography and outcome

Age (years) 42 ± 19 37 ± 16 44 ± 19 38 ± 17 ns ns

Male (%) 465 (69%) 2340 (78%) 312 (75%) 2017 (78%) 0.040 ns

BMI (kg/m2) 25.3 ± 5 24.7 ± 4.3 25.2 ± 4.4 24.8 ± 4.7 ns ns

SAPS II 45 ± 22 21 ± 15 46 ± 23 21 ± 15 ns ns

ICU LOS 18 ± 23 8 ± 15 14 ± 19 7 ± 15 0.001 0.001

Hospital mortality 163 (25%) 137 (5%) 93 (23%) 110 (4%) ns ns

Predicted mortality by TRISSa (%) 27 6 27 6

Mechanism of injury (all blunt)

MVA 133 (20%) 765 (26%) 97 (23%) 617 (24%)

Motorbike 151 (23%) 905 (30%) 95 (23%) 861 (33%)

Pedestrian and bicycle 109 (16%) 381 (13%) 47 (11%) 343 (13%) ns ns

Fall 243 (36%) 792 (26%) 144 (35%) 621 (24%)

Miscellaneous 36 (5%) 150 (5%) 32 (8%) 142 (6%)

Severity of injuries

ISS 30 (18–38) 12 (5–20) 27 (14–41) 12 (5–21) ns ns

Head and neck AIS 2 (0–4) 0 (0–3) 1 (0–3) 0 (0–2) ns ns

Thorax AIS 3 (0–3) 0 (0–3) 3 (0–4) 0 (0–3) ns ns

Abdomen AIS 2 (0–3) 0 (0–2) 2 (0–3) 0 (0–2) ns ns

Extremities pelvis AIS 3 (2–3) 2 (0–2) 3 (1–4) 0 (0–3) ns 0.001

At admission

Total pre-hospital time (min) 85 ± 39 80 ± 37 80 ± 37 77 ± 34 0.010 ns

SBP (mmHg) 102 ± 34 129 ± 23 107 ± 35 130 ± 24 ns ns

DBP (mmHg) 62 ± 23 76 ± 16 65 ± 24 79 ± 17 ns 0.001

Haemoglobin (g/dl) 10.2 ± 2.6 13.4 ± 1.7 10.7 ± 2.7 13.5 ± 1.7 0.010 ns

Lactate (mmol/L) 4.8 ± 3.4 1.9 ± 0.9 4.9 ± 3.4 2 ± 0.9 ns 0.002

Prothrombin time (%) 57 ± 22 83 ± 15 61 ± 23 84 ± 15 0.010 ns

Surgery day 1 562 (84%) 1867 (62%) 305 (74%) 1235 (48%) 0.001 0.001

Angio-embolization day 1 111 (17%) 67 (2%) 88 (21%) 86 (3%) 0.001 0.001

SH characteristics

Immediate surgery 123 (16%) – 88 (21%) – ns –

Transfusion in trauma room 425 (63%) – 245 (59%) – ns –

Lactates > 5 mmol/L 323 (51%) – 194 (52%) – ns –

≥ 4 RBCs in first 6 h 385 (57%) – 204 (49%) – 0.010 –

Results expressed as mean ± standard deviation, n (%) or median (1st quartile–3rd quartile)
SH severe haemorrhage, ns not significant, BMI body mass index, SAPS Simplified Acute Physiology Index, ICU LOS intensive care unit length of stay, TRISS Trauma
Injury Severity Score, MVA motor vehicle accident, ISS Injury Severity Score, AIS Abbreviated Injury Scale, SBP systolic blood pressure, DBP diastolic blood pressure
RBC red blood cell
a TRISS computed by giving a respiratory rate of 20/min in all patients [35]
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at p ≤ 0.05 were considered significant. R 3.3.3 software (R
Foundation for Statistical Computing, Vienna, Austria)
was used for analysis.

Results
The flowchart of both the derivation (n = 4339) and val-
idation (n = 3606) cohorts is presented in Fig. 1. Patients
presenting with initial cardiac arrest, penetrating trauma
or no pre-hospital data available were excluded, leaving
3675 (85%) patients for analysis in the derivation cohort
and 2999 (83%) in the validation cohort. The distribu-
tion of patient across centres is described and illustrated
in Additional file 1.
The main characteristics of both cohorts are presented

in Table 1. The observed mortality was lower in both
groups than the expected mortality according to the
TRISS. The two cohorts significantly differed mainly in
terms of haemostatic strategies with less surgery (58 vs
51%), more angio-embolization (3% vs 6%) and a shorter
intensive care unit length of stay in the validation cohort.

Score development
Table 2 presents the results of the univariate analysis
performed in the derivation cohort (Additional file 2).
All of the pre-hospital variables were significantly associ-
ated with SH. Collinear variables were HR, SBP, Shock
Index (Shock Index was kept), and SBP, DBP and MBP;
the latter was kept as not collinear to the Shock Index.
As reported in the lower part of Table 2, when there was
no clinically relevant cut-off value, Youden’s index was
used to dichotomize continuous variables (resulting
thresholds are presented in Additional file 3).
Ten variables were thus included in the multivariate

model and seven variables were selected for the final
prediction model (i.e. all but gender, GCS and vasopres-
sor administration) (Table 3). The model goodness-of-fit
was good according to the Hosmer–Lemeshow statistic
(p = 0.60). The discrimination as evaluated by the AUC
was 0.84 (95% CI 0.82–0.86). As internal validation, opti-
mism was evaluated at 0.001 using bootstrap method-
ology, so the optimism-corrected AUC was 0.84 (95% CI
0.82–0.85).

Table 2 Univariate analysis of pre-hospital variables in the derivation cohort

SH
(n = 672)

No SH (n = 3003) Missing values,
n (%)

p

Male 465 (69%) 2258 (78%) 7 (0%) < 0.001

Age (years) 42 ± 19 37 ± 16 7 (0%) < 0.001

SBP min (mmHg) 93 ± 30 118 ± 22 50 (1%) < 0.001

DBP min (mmHg) 55 ± 18 70 ± 15 65 (2%) < 0.001

MBP min (mmHg) 68 ± 21 86 ± 16 50 (1%) < 0.001

HR max (/min) 108 ± 27 93 ± 20 73 (2%) < 0.001

Shock Index (HR/SBP) 1.3 ± 0.8 0.8 ± 0.4 77 (2%) < 0.001

Capillary haemoglobin (g/dl) 12.8 ± 2.2 14.2 ± 1.7 183 (5%) < 0.001

SpO2 min (%) 97 (92–100) 98 (96–100) 99 (3%) < 0.001

Glasgow Coma Scale 14 (7–15) 15 (14–15) 17 (0%) < 0.001

Pelvic trauma 115 (18%) 106 (4%) 141 (5%) < 0.001

Vasopressor 216 (33%) 140 (5%) 37 (1%) < 0.001

Pre-hospital intubation 385 (57%) 692 (23%) 6 (0%) < 0.001

Binarized variables (Youden’s Index)

SBP min≤ 100 421 (64%) 569 (19%) < 0.001

MBP≤ 70 mmHg 382 (58%) 448 (15%) < 0.001

HR max ≥100 418 (64%) 1050 (36%) < 0.001

Shock Index (HR/SBP) ≥ 1 394 (60%) 419 (14%) < 0.001

Capillary haemoglobin ≤ 13 382 (59%) 812 (29%) < 0.001

SpO2 min≤ 90%a 142 (22%) 189 (6%) < 0.001

Glasgow Coma Scale ≤13a 321 (48%) 712 (24%) < 0.001

Results expressed as mean ± standard deviation, n (%) or median (1st quartile–3rd quartile)
SH severe haemorrhage, SBP systolic blood pressure, DBP diastolic blood pressure, MBP mean blood pressure, HR heart rate, SpO2 peripheral oxygen saturation,
min minimal, max maximal
aCut-off value not binarized with receiver operating characteristic curves
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Table 4 presents the predictive performances of several
combinations of points attributed to each variable
remaining in the final prediction model. The combination
associated with the optimal trade-off between predictive
accuracy (AUC 0.83 (0.81–0.84)), performance (sensitivity
75% (72–79%), specificity 79% (77–80%)) and ease of use
was the simple sum of the following five criteria: SI ≥ 1,
point of care haemoglobin ≤ 13 g/dl, pre-hospital intub-
ation, MBP minimum ≤ 70 mmHg and clinical signs of
unstable pelvic fracture at any time during pre-hospital
management. The Red Flag binary alert was considered to
be activated if this score, ranging from 0 to 5, was superior

or equal to 2 points. Its predictive performances are pre-
sented in Table 4. The three-variable combination (thresh-
old 1 point, Table 4) offers less performance (Delong test
for ROC curves of paired data, p < 0.001), but seems to
be an interesting option especially in a non-physician-
staffed EMS (less oro-tracheal intubation and no available
pre-hospital haemoglobin measurement).

External validation
Figure 2 shows the calibration plot of the final predic-
tion model in the 2999 patients of the validation cohort.
The agreement between predicted probabilities and ob-
served proportions was adequate, except in the group
with a predicted risk of SH from 40 to 50% in which the
observed proportion of patients with SH was 32%. The
AUC of the final prediction model in this population was
0.80 (95% CI 0.78–0.83), similar to the AUC computed in
the derivation cohort (p = 0.19) and significantly higher
than the AUC of the MGAP score equal to 0.72 (95% CI
0.69–0.73) (p < 0.001). The predictive performances of
the Red Flag binary alert assessed in this population were:
sensitivity = 70% (95% CI 66–75), specificity = 80% (95%
CI 78–81), PPV = 36% (95% CI 34–38) and NPV= 94%
(95% CI 94–95). The contingency mosaics drafted for a
threshold of 2 and 3 points are shown in Fig. 3.

Table 3 Results of multivariate stepwise analysis

Pre-hospital criteria Coefficient OR 95% CI P

Shock Index > 1 1.32 3.76 2.96–4.78 < 0.001

Pelvic trauma 1.32 3.76 2.68–5.28 < 0.001

Pre-hospital intubation 0.98 2.67 2.17–3.28 < 0.001

Capillary haemoglobin ≤ 13 g/dl 0.92 2.51 2.05–3.08 < 0.001

MBP≤ 70 mmHg 0.87 2.38 1.88–3.02 < 0.001

Oxygen saturation minimal≤ 90% 0.59 1.79 1.35–2.39 < 0.001

Age > 50 years O.42 1.52 1.21–1.92 < 0.001

Model intercept was −3.33 (p < 0.0001)
OR odds ratio, CI confidence interval, MBP mean blood pressure

Table 4 Predictive properties of the various combinations studied to identify the Red Flag binary alert

Shading indicates chosen combination
T threshold, Se sensitivity, Sp specificity, PPV positive predictive value, NPV negative predictive value, +LR positive likelihood ratio, –LR negative likelihood ratio,
AUC area under the receiver operating characteristic curve, SI Shock Index, Pelvis unstable pelvis, OTI oro-tracheal intubation, Hb point-of-care haemoglobin, MBP
mean blood pressure, SpO2 peripheral oxygen saturation
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Discussion
In this study, a Red Flag binary alert derived from an ef-
ficient combination of pre-hospital criteria was identified
with high predictive performances to detect patients at
risk of SH. Its high predictive performances were con-
firmed in internal and external validations. To our
knowledge this is the first report of a validated pre-
hospital triggered haemorrhage pre-alert. In practice, the
presence of any combination of at least two criteria during
the pre-hospital care phase among patients with SI (HR/
SBP) ≥ 1, unstable pelvic fracture, intubation, point of care
haemoglobin ≤ 13 g/dl or MBP ≤ 70 mmHg activates the
Red Flag and provides a powerful signal to initiate an ad-
equate intra-hospital standardized haemorrhage control
response (massive transfusion protocol and/or immediate
haemostatic procedures).
The criteria identified in this study as associated with SH

share similarities with some used in previously described
haemorrhage control pathways or massive transfusion
scores. Unstable pelvic fracture is part of the TASH score,
and part of numerous existing scores predicting ongoing

haemorrhage [16, 41]. It is a source of internal bleeding
that is difficult to control especially in the case of arterial
bleeding (20%) but also in the case of venous bleeding, des-
pite pelvic binding. In the TASH score, unstable pelvic
fracture accounts for about 20% of the total score (6 points
from 28), as in our study (1 from 5). The Shock Index has
been demonstrated as a useful sign to diagnose acute hypo-
volemia and as a good marker of severe haemorrhagic
shock [42]. The threshold used in the Red Flag is 1, while
the most frequently suggested SI cut-off value to predict
massive transfusion is 0.9 in the literature [43]. Also, the
threshold of haemoglobin concentration identified in our
study was 1 point higher than the threshold used in the
TASH score (13 g/dl vs 12 g/dl) [13]. The timing and the
technique of measurement used in our study may explain
the difference. Indeed, in the present study, haemoglobin
concentration was assessed with a point-of-care technique
on scene, thus at a very early stage, whereas the TASH
score uses the haemoglobin laboratory concentration at
hospital admission. Blood pressure is also a key variable in
almost all existing predictive scores for severe haemorrhage

Fig. 2 Calibration plot of the model in the validation cohort: agreement between observed and predicted proportion of severe haemorrhage
(SH) by the model
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[16, 41]. Nevertheless, only SBP is used, while the oscillo-
metric sphygmomanometer, used in many EMSs, measures
a MBP and extrapolates SBP and DBP via an algorithm
[44]. For this reason, MBP was chosen in the Red Flag and
the information carried by this variable was found inde-
pendent of that carried by the SI. Intubation by the pre-
hospital team, however, has never been suggested as being
associated with severe haemorrhage in previous studies. In
our pre-hospital system, physicians are involved in the pre-
hospital setting and this may explain this association as it
is usually the most severe patients who are intubated dur-
ing pre-hospital care [45].
The major advantage of this Red Flag alert is its sim-

plicity of use and pragmatism as it is computed with
routinely assessed variables and thus directly available
criteria for the pre-hospital care team. It allows the rapid
identification of patients who require mobilization of im-
portant human and material resources to control haem-
orrhage (advanced immediate resuscitation and/or
haemostatic procedures, early and sustained transfusion,
etc.). The predictive performances of the previously de-
scribed “Code Red” have not yet been extensively evalu-
ated [17, 18]. The other existing simple scores are not
based on pre-hospital variables [41], or were built to pre-
dict outcome such as mortality [11, 46]. The Red Flag
could not be compared to the TASH or ABC score.

Those latter scores were validated for an intra-hospital
setting and include variables such as ultrasound use or
blood gas results, variables that are not systematically
available in the pre-hospital environment.
The present work is the first to attempt an extensive

assessment of the predictive performance of routine pre-
hospital data and to include a validation. A code should
be easy to remember and the criteria routinely available;
both apply to the Red Flag. Indeed, any prediction tool
requires evaluation and validation in the very specific
setting it will be implemented in. In the case of an in-
appropriate activation, the complete set of the haemor-
rhage control infrastructure may be activated and
disorganize programmed care for a while. So, any activa-
tion code requires a delicate balance between sensitivity
and specificity; that is, between the risk of not activating
the haemorrhage control pathway when it is needed
(false negative, potentially detrimental to the patient)
and over-activation (increase in false positive). On the
one hand, it is crucial not to miss any haemorrhagic pa-
tients and get activated for their arrival, but, on the
other, over-activation can generate waste of precious re-
sources and induces team fatigue leading to further non-
compliance. Unjustified activation may even reduce the
chance of other patients to benefit from the resources
inadequately put on standby. An appropriate number of

Fig. 3 a Red Flag alert. b Contingency mosaic according to threshold of activation. FN false negative, FP false positive, Hb haemoglobin MBP
mean arterial blood pressure, OTI Oro-tracheal intubation, SI Shock Index, TN true negative, TP true positive
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activations, however, maintains team readiness and
training. The clinical consequences of this alert will have
to be assessed (times, process, outcomes, etc.).
Our study obviously has some limitations. The first is its

retrospective design, as it usually precludes the ad hoc
choice of the data studied. It might have been interesting
to investigate the contribution of other criteria which were
not collected in our study: pre-hospital ultrasonography,
described as a bleeding characterization criterion in the
ABC score [15], or pre-hospital blood lactate dosage de-
scribed as a predictor of trauma severity [47]. However,
this is actually a strength of our study, as it allowed the
analysis of pre-hospital data that are routinely collected in
practice by the EMS which reinforces the interest in Red
Flag as a pragmatic, easy-to-use tool. Moreover, beside
this retrospective analysis, data collection was prospective
as this study used data from the Traumabase®, and this
has limited data loss and biases inherent to retrospective
data collection [48]. Furthermore, this study is the first to
evaluate the question in a physician-staffed EMS, whereas
existing work has been generated in a paramedic-staffed
EMS. Transposition of experiences and data from one sys-
tem to another can be difficult. The external validity of
the study could only be assessed by testing and validating
it outside the original centres. The characteristics of these
centres, however, are quite different with regard to equip-
ment, internal organization and case mix as there is a lot
of contrast in demographic characteristics of the different
area covered by each centre within the region. So, results
from this study are thus likely to be transposable to other
centres. Furthermore, demographic and clinical character-
istics of our cohort, as well as mortality, were similar to
those in the trauma literature [14, 49]. It is noteworthy
that this alert does not apply to penetrating trauma and
has not been validated for children. Finally, the impact of
this Red Flag alert on patient care has not been evaluated
and requires a separate prospective study.

Conclusion
We have constructed and validated a simple Red Flag
alert for identifying severe blunt trauma patients during
the pre-hospital care phase and activating a specific im-
mediate intra-hospital haemorrhage control response
prior to arrival. The impact of its use on severe trauma
patient care and on resource utilization remains to be
determined.
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