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Abstract

Background: Early recognition and timely intervention are critical steps for the successful management of shock.
The objective of this study was to develop a model to predict requirement for hemodynamic intervention in the
pediatric intensive care unit (PICU); thus, clinicians can direct their care to patients likely to benefit from interventions to
prevent further deterioration.

Methods: The model proposed in this study was trained on a retrospective cohort of all patients admitted to a tertiary
PICU at a single center in the United States, and validated on another retrospective cohort of all patients admitted to
the PICU at a single center in the United Kingdom. The PICU clinical information system database (Intellivue Clinical
Information Portfolio, Philips, UK) was interrogated to collect physiological and laboratory data. The model was trained
using a variant of AdaBoost, which learned a set of low-dimensional classifiers, each of which was age adjusted.

Results: A total of 7052 patients admitted to the US PICU was used for training the model, and a total of 970 patients
admitted to the UK PICU was used for validation. On the training/validation datasets, the model showed better prediction
of hemodynamic intervention (area under the receiver operating characteristic (AUROC) = 0.81/0.81) than systolic blood
pressure-based (AUCROC = 0.58/0.67) or shock index-based (AUCROC = 0.63/0.65) models. Both of these models were age
adjusted using the same classifier.

Conclusions: The proposed model reliably predicted the need for hemodynamic intervention in PICU patients
and provides better classification performance when compared to systolic blood pressure-based or shock index-based
models alone. This model could readily be built into a clinical information system to identify patients at risk of
hemodynamic instability.
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Background

Early recognition and treatment of shock have been
shown to decrease mortality in children in a variety of
clinical scenarios [1]. However, diagnosis of shock in
children, which is based on integration of patient history,
vital signs, physical examination, and laboratory data,
can be difficult. One challenge comes from the fact that
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normal-range values of clinical measurements including
blood pressure, heart rate, and respiratory rate vary as
children grow and age, and therefore need to be age
adjusted and integrated if the clinician wants to use
these measurements as early indicators of clinical
deterioration [2, 3]. In addition, commonly used measures
for instability such as blood pressure are often maintained
within a normal range by very effective physiologic
compensatory mechanisms in children until very late in
the process of hemodynamic deterioration, after which
point deterioration accelerates very rapidly [4].
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Early warning scores are clinical decision support systems
designed for initial assessment and identification of patients
at risk. These systems were initially developed for use in
adults, although there has been some recent research in
children; the purpose of these systems is to identify patients
at risk of deterioration in inpatient ward areas rather than
in the ICU [5-7]. Early risk stratification using biomarkers
is another promising method to identify patients at higher
risk for morbidity and mortality, who might be candidates
for more aggressive interventions or for clinical trial
enrolment [8], but this technology is still in its infancy as
immediate point-of-care testing is not possible.

The aim of this study was to construct and validate a
systematic model for the early prediction of need for
hemodynamic intervention (i.e., hemodynamic instability)
in children already in the pediatric intensive care unit
(PICU). This was defined as a clinical intervention (i.e.,
bolus fluid administration > 10 ml/kg/hour and/or initiation
of vasoactive drugs) given to improve cardiovascular status.

Methods

A dataset from patients admitted to the PICU in a single
hospital in the United States was used for training,
cross-validation, and testing of the model. Once the
model had been developed, the performance of the
model was validated using another dataset from a PICU
in the United Kingdom.

The dataset used for training and testing of the model
was obtained retrospectively from an electronic flow
sheet (Philips CareVue, Waltham, MA, USA) and a
demographic database (Microsoft Access, Redmond,
WA, USA) maintained by the pediatric intensivists. This
dataset included records from 13,583/17,598 patients/
encounters admitted to the PICU at Children's Hospital
Los Angeles (CHLA) from 2003 to 2011. A patient
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might have been admitted several times to the PICU,
thus generating more than one encounter per patient.
However, only the first admission for each patient was
included in the analysis. After excluding patients who
did not meet the inclusion criteria shown in Fig. 1, the
dataset resulted in 7052 patients.

The dataset used for the validation was obtained
retrospectively from a Philips Intellispace Critical Care
and Anaesthesia (ICCA) system. This dataset included
records from 2094/2435 patients/encounters admitted to
the PICU at St Mary’s Hospital, London, UK from 2009
to 2015. Only the first admission for each patient was
included in the analysis. After excluding patients who
did not meet the inclusion criteria shown in Fig. 1, the
dataset resulted in 970 patients.

St Mary’s dataset was exported as a Service Evaluation
which was approved by Imperial College Healthcare
NHS Trust—need for individual consent was waived.
IRB approval was obtained for CHLA—need for
individual consent was waived. All records were
completely de-identified for this study.

Both datasets originated from a nonannotated database;
thus, no gold standard of hemodynamic instability was
available. Instead, certain interventions by clinicians were
used to demarcate hemodynamic instability events. The
criteria for instability were developed based on a strong
consensus among a group of experienced intensive care
physicians. Each encounter was labeled as either
hemodynamically unstable (i.e, exposure group) or
hemodynamically stable (i.e., control group).

An encounter was labeled as hemodynamically unstable
if the patient received a hemodynamic intervention. This
included resuscitation with fluids (i.e., administration of a
bolus fluid (colloid or crystalloid) > 10 ml/kg/hour) or
initiation of vasoactive medications (i.e., dopamine,
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dobutamine, epinephrine, norepinephrine, neosynephrine,
or vasopressin). The onset of hemodynamic intervention
was defined as the time of the first intervention (either
bolus fluid or vasoactive medications). Patients who were
hemodynamically unstable during the first 6 hours of
admission to the PICU were excluded from the analysis. A
patient was labeled as hemodynamically stable if the
patient did not receive any of the mentioned clinical
interventions during the entire PICU stay. Only one
clinical intervention was considered per patient. Each
patient in the training or validation dataset was associated
with a set of 36 variables (features) including vital signs,
laboratory values, and ventilator parameters. Each of these
features was extracted within a 24-hour observation
window that preceded the hemodynamic intervention.
The last measurement within the observation window was
used as the value for that feature. If no measurements
were found within the observation window for a specific
feature, that feature was assigned a missing value (i.e., Not
a Number (NaN)). A similar procedure was followed for
the control group. Since there was no hemodynamic inter-
vention in this group, variables were extracted within a
random observation window during the patient stay. A
patient may have invasive (ie., arterial line) and
noninvasive (i.e., blood pressure cuff) blood pressure mea-
surements taken very close together (i.e., within 10-20
minutes difference). In this case, the noninvasive blood
pressure measurement was excluded from the analysis
and the invasive blood pressure measurement was used
instead. Composite features were derived from a combin-
ation of other variables. The shock index was derived from
heart rate (HR) and systolic blood pressure (SBP):

HR
hock i =
Shock index SBP

The oxygenation index (OI) and oxygen saturation
index (OSI) were derived from mean airway pressure
(MAP), FiO,, and PaO, or SpOy:

_ MAP * FiO, * 100

Ol =
Pa02 ’
OSI — MAP * FiO, * 100.
SpO,

Table 1 presents all variables (input to the model)
categorized by panel and component tests. All variables
passed through a plausibility filter to check whether
their values were in a physiologically valid range; that is,
values outside the physiological range were assigned a
missing value. During training, the classifier (AdaBoost)
learned age-dependent risk thresholds for each variable
and compensated for variability in the normal range of
feature values over different age groups. Data extracted
at the onset of hemodynamic intervention were used
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for training of the classifier. This dataset was split it
into 90% for training and cross-validation, and 10% for
testing.

Once the classifier was trained, the performance of the
algorithm was tested and validated on variables extracted
within a 24-hour observation window that preceded (i.e.,
1-12 hours) the onset of hemodynamic intervention. Al-
gorithm performance was measured by the area under
the ROC (AUROC) curve at different prediction times.

The final dataset for training and testing of the model
(i.e., CHLA) has 36 variables and 42% instability preva-
lence (2945 hemodynamically unstable, 4107 hemody-
namically stable). The final dataset for validation of the
algorithm (St Mary’s Hospital) has 36 variables and 24%
instability prevalence (235 hemodynamically unstable,
735 hemodynamically stable). Table 2 shows summary
statistics stratified by exposure (hemodynamically un-
stable) and control (hemodynamically stable) groups.

Model development

The AdaBoost classifier was used for development of
the model. AdaBoost is a very effective machine lear-
ning technique for constructing a powerful ensemble
classifier from a weighted majority vote of simpler
(“weak”) classifiers. In this work, the weak classifiers
are simple decision stumps that predict the hemo-
dynamic status (stable/unstable) based on a combin-
ation of a single feature (e.g., heart rate) and the
patient’s age. Thus, each weak classifier can be thought
of as a lookup table based on patient age and another
feature. Including the patient’s age in each weak classi-
fier allows us to learn age-dependent risk thresholds
and compensate for variability in the normal range of
feature values over age groups. For instance, a 14-
year-old child with a shock index (SI) of 1.2 will be at
a higher risk of hemodynamic instability than a 1 year
old with the same SI value (see Additional file 1:
Figure S1).

A slight variation of the AdaBoost classifier [9]
(AdaBoost-abstain) was employed to handle missing
features. Certain features that were highly predictive of
hemodynamically instability when measured, such as
lactic acid, were missing on 86% or more of the patient
encounters in the training dataset. Rather than discard
sporadically measured features entirely or impute miss-
ing values, AdaBoost-abstain allows each weak classifier
to abstain from voting if its dependent feature is missing.
Thus, weak classifiers produce one of three outputs
(either hemodynamically stable, hemodynamically un-
stable, or no vote (abstain)). AdaBoost-abstain was
trained and tested using 10 cross-validation folds. Each
fold had roughly equal size and roughly the same class
proportions as the whole dataset.
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Table 1 Features (units of measurement and percentage of patients with that feature recorded) for training (and validation) datasets.

Arterial blood gas

Invasive vitals

Arterial pH 63 (92) Invasive mean blood pressure (iMBP) mmHg 51 (1)
Bicarbonate (HCOs) mEq 63 (84) Invasive systolic blood pressure (iSBP) mmHg 51(1)
Arterial PaCO, mmHg 63 (92) Invasive diastolic blood pressure (iDBP) mmHg 51(1)
Sa0, % 63 (79)
Arterial base excess (aBE) mEqg/L 63 (91)
Arterial PaO, mmHg 63 (92)
Ventilator parameters Noninvasive vitals/demographics
PF ratio 41 (26) Noninvasive mean blood pressure (nMBP) gmmHg 98 (100)
FiO, % 76 (89) Noninvasive systolic blood pressure (nSBP) gmmHg 98 (100)
Mean airway pressure cmH,0 35 (66) Noninvasive diastolic blood pressure (NDBP) mmHg98(100)
Heart rate (HR) bpm 100 (100)
Respiratory rate (RR) bpm 99 (96)
SpO, % 61 (68)
Age years 100 (100)
Temperature (T) Celsius 99 (99)
Basic metabolic panel Comprehensive metabolic panel
Glucose mg/dl 74 (91) Alanine aminotransferase (ALT) U/L 18 (77)
Chloride mEqg/L 72 (91) Albumin g/dl 18 (81)
Blood urea nitrogen (BUN) mag/dl 66 (84) Total protein g/dl 18 (81)
Creatinine mg/dl 66 (84)
Potassium mEag/L 78 (91)
Sodium mEqg/L 77 (93)
Complete blood count
WBC - leukocytes K/ul 65 (43) RBC M/ul 65 (12)
Hemoglobin g/dl 68 (52) Platelets K/ul 65 (41)
Additional tests
Magnesium mag/dl 26 (70) Prothrombin time (INR) seconds 37 (29)
Lactic acid mg/dl 14 (45) Urine output cm3/kg/hour 77 (72)

All 36 features were input to the AdaBoost-abstain classifier to classify hemodynamic instability. Among the 36 features, only 21 (highlighted in bold) were selected by

the model
RBC red blood cells, WBC white blood cells

Table 2 Summary statistics stratified by exposure and control

groups.
All Exposure Control
observations group group
N=7052 (970) N=2945 (235) N=4107 (735)
Mean age 6.9 (4.3) 6.6 (3.9 7.1 (44)
(years)
Mechanically 39.3 (66.2) 56.1 (85.9) 285 (60.4)
ventilated (%)
Mean PICU LOS 82 (6.6) 153 (13.5) 3.6 (4.6)
(days)
Mortality (%) 3(4.2) 6 (14.9) 1.1(1.1)

Values in parentheses correspond to the validation dataset
LOS length of stay, PICU pediatric intensive care unit

Results

Thirty-six features were input into the AdaBoost-abstain
classifier during training, and only 21 were selected by
the classifier. Among those 21 selected features, SI, pH,
mean airway pressure, and normalized urine output (ml/
kg/hour) were the most discriminative predictors of the
model. In the cross-validation results using the training
dataset, the model predicted hemodynamic instability
with an AUROC of 0.80 (0.70), sensitivity of 0.66 (0.50),
specificity of 0.78 (0.77), positive predictive value (PPV)
of 0.68 (0.62), negative predictive value (NPV) of 0.76
(0.68), and positive likelihood ratio (LR) of 5.22 (3.26) at
1 and 12 hours before hemodynamic intervention.
Values in parentheses correspond to the performance at
12 hours before hemodynamic intervention. The
optimal threshold (i.e., probability >0.47 classifies an
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encounter as hemodynamically unstable) was selected
such that sensitivity (recall) and precision were equal.
PPV and NPV were adjusted for 42% prevalence of
hemodynamic instability.

The classification performance of the algorithm in the
training dataset was evaluated across five age groups (1-12
months old and 1-3, 3-6, 6-12, and 12-20 years old,) and
different sets of features (vital signs, laboratory data, venti-
lator parameters). The classification performance across the
five age groups (presented in Table 3) was very similar
(mean AUROC=0.78, standard deviation (SD)=0.04,
minimum = 0.74, maximum = 0.83). The overall perform-
ance when only vital signs or laboratory values were
included in the model was AUROC of 0.71 and 0.70,
respectively. Each set of features alone was a good predictor
of hemodynamic instability, but the classification perform-
ance was better when vitals and laboratory values were all
combined into one model (AUROC = 0.77). The impact of
mechanical ventilation in the algorithm performance was
also evaluated. The classification performance for patients
on mechanical ventilation (AUROC = 0.78) was very close
to patients who were not (AUROC = 0.77).

Model validation

Once the parameters of the model were learned using
the training dataset, the final model was validated using
data from a different PICU (St Mary’s Hospital). The
classification performance of the algorithm in the valid-
ation dataset was AUROC of 0.81 (0.74), sensitivity of
0.76 (0.66), specificity of 0.70 (0.71), PPV of 0.45 (0.42),
NPV of 0.90 (0.87), and positive LR of 2.65 (2.27) at 1
and 12 hours before hemodynamic intervention. The
optimal threshold (i.e., probability >0.57 classifies an
encounter as hemodynamically unstable) was selected
such that sensitivity (recall) and precision were equal.
PPV and NPV were adjusted for 24% prevalence of
hemodynamic instability. Classification performance on
the validation dataset was very similar across the five age
groups (mean AUROC =0.81, SD=0.06, minimum =
0.72, maximum = 0.89) (see Table 3).

Table 3 Algorithm performance across different age groups.

Age group N? AUROCP
1-12 months 165/300 0.82/0.78
1-3 years 98/245 0.77/0.82
3-6 years 94/147 0.82/0.72
6-12 years 151/159 0.74/0.89
12-20 years 191/105 0.75/0.85

“Number of patients for that particular age group (training/validation)
PReported at the time of hemodynamic intervention (training/validation)
AUROC area under receiver operating characteristic curve
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Comparison against blood pressure-based or Sl-based
models

To test the hypothesis that the proposed model is superior
to systolic blood pressure-based or SI-based models for
the early detection of hemodynamic instability, the classi-
fication performance of the three models was evaluated
on the training and validation datasets. Both models were
adjusted by age using the same classifier. Figure 2 shows
that, on average, the proposed model improves the
AUROC of the systolic blood pressure-based model by
almost 15%, and of the SI-based model by 11%.

Predicting the need for vasoactive agents only

Among 2945 encounters labeled as hemodynamically un-
stable in the training dataset, 70% received a bolus of
fluid > 10 ml/kg/hour and 30% received vasoactive medi-
cations. To evaluate whether the model was biased
towards a bolus of fluid (>10 ml/kg/hour) as the first
intervention, we calculated the performance of the model
on encounters where the first intervention was vasoactive
medication. The performance of the model was AUC =
0.88/0.87 in the training (CHLA) and validation (St
Mary’s) datasets, respectively. Thus, the model performs
and generalizes well on those unstable encounters where
the first intervention was a vasoactive medication.

Algorithm structure

The model was implemented in ICCA Rel H as one of the
algorithms included in the clinical decision support
flowsheet. The algorithm receives as input 21 features: vital

0.85 0.85

AUC

0.65 | 40.65
Shock Index

06 W 06
Systolic Blood Pressure
055 _//\_\/_/——_ 055

05 n n n n n 05
-12 -6 0

Hours before intervention

Fig. 2 Model performance on training dataset. Using shock index
(Sl) alone, one can detect hemodynamic instability hours before
clinical intervention, much earlier than relying on systolic blood
pressure alarms (AUC = 0.63); but, using our model, which combines SI
and other measurements, further improves the early detection (AUC =

0.81). AUC area under the curve, Hll hemodynamic instability indicator
.
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nSBP

nS|

Age

SpO2 oxygen saturation

Fig. 3 Schematic of algorithm. The algorithm receives as input 21 features from vital signs, laboratory, ventilator measurements, normalized urine
output, and age. The algorithm first filters input values in valid ranges, secondly determines feature value thresholds that depend on the age of
the patient, thirdly determines feature contribution prediction scores, and finally aggregates the individual feature contribution prediction scores
to determine a hemodynamic instability indicator (HIl). The HIl is a score, on a scale from 0 to 1, representing the probability of a patient to be
hemodynamically unstable. This score is mapped to three colors to indicate the risk level of deterioration (i.e., green for low risk, yellow for
medium risk, and red for high risk). aBE arterial base excess, BUN blood urea nitrogen, FiO fraction of inspired oxygen, HR heart rate, iMBP invasive mean
blood pressure, INR international normalized ratio, iSBP invasive systolic blood pressure, iSI invasive shock index, nMBP noninvasive mean blood pressure,
nSBP noninvasive systolic blood pressure, nSI noninvasive shock index, PaO2 arterial partial pressure of oxygen, RBC red blood cells, RR Respiratory rate,

Time

signs (heart rate, noninvasive or invasive systolic blood
pressure, noninvasive or invasive mean blood pressure, res-
piration rate, SpO,, temperature), laboratory measurements
(pH, PaO,, aBE, INR, albumin, glucose, hemoglobin, RBC,
BUN), ventilator measurements (mean airway pressure,
FiO,), normalized urine output, and age (Fig. 3). These
measurements are first filtered allowing only reasonable
data (i.e., measurements in a physiologically valid range) to
be passed for further processing. The algorithm expects
new measurements added as they become available in a
time-sequential manner. At a minimum, heart rate and age
are required for the algorithm to produce an output. For
frequent output of the algorithm, it is suggested that heart
rate and blood pressure are made available to the algorithm
via an automated interface as frequent as once a minute.
However, if vital signs are supplied at a lower frequency,
such as hourly with nurse charting, the algorithm will still
output a score that is predictive of hemodynamic instability.
The minimum frequency for laboratory, blood pressure,
and ventilator measurements is 24 and 1 hour, respectively.
If no measurements are made in the last 24 hours (for
laboratory measurements) or 1 hour (for blood pressure
measurements), the measurement is considered missing.
Once the feature values are filtered, the algorithm de-
termines feature value thresholds that depend on the

age of the patient, then determines feature contribution
prediction scores, and finally aggregates the individual
feature contribution prediction scores to determine a
hemodynamic instability indicator (HII). The HII is a
score, on a scale from 0 to 1, that represents the prob-
ability of a patient to be hemodynamically unstable
(i.e., to receive a hemodynamic intervention with fluid
bolus or cardiovascular medications). This score is
mapped to three colors to indicate the risk level of
deterioration (i.e., green for low risk, yellow for
medium risk, and red for high risk as shown in Fig. 3).

Discussion

Our proposed model can be used to identify patients
at risk of hemodynamic instability in the hours before
the clinical intervention and provides better classifica-
tion performance results compared to systolic blood
pressure-based or SI-based models. The algorithm has
the advantage of handling missing values without
doing imputation, of adjusting features that are age
dependent, and of integrating different sources of clin-
ical data to produce a single risk score that the care-
giver can easily interpret. The algorithm outputs a risk
score (i.e., probability of clinical deterioration) that
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could be used to intelligently allocate clinical resources
and identifies high-risk patients.

The shock index may predict outcomes of adults in
intensive care [10]. However, its adoption in children is
limited since an age-standardized SI is difficult to assess,
especially in the context of chronic illness [11]. The
hemodynamic instability risk profiles proposed in our
model may be a solution to this problem since features
such as SI are age-standardized using a purely data-
driven approach (see Additional file 1: Figure S1). Our
model includes clinical features that are in line with
current understanding of the clinical manifestations of
early shock. It is known that during the early stages of
circulatory shock the body activates mechanisms to com-
pensate for the lack of oxygen delivery to the main organs
and tissues [1]. Mainly, the heart rate increases by activa-
tion of the sympathetic nervous system, and urine output
decreases by activation of the renin—angiotensin—aldoster-
one system. Other clinical features such as cold extre-
mities, mottled skin, and prolonged capillary refill time
were not considered in the model as they are signs of de-
compensated shock and thus represent the physiological
state clinicians are trying to avoid [12].

Our model learned to associate an increased risk of
hemodynamic instability during any time that a patient
was invasively monitored (i.e., placement of an arterial
line) or was on mechanical ventilation. However, the
classification performance was not significantly reduced
when invasive measurements or ventilator parameters
were considered missing in the model (a 2% drop in
classification performance). Although the final model
was mainly trained for predicting hemodynamic inter-
ventions (i.e., fluid bolus or initiation of vasoactive
drugs), the same model could be used for tracking the
patient’s response to therapy. Further research and pro-
spective studies are needed to answer this question.

Data limitations and challenges

One of the major challenges and most time-consuming
task in the development of prediction models has con-
cerned the use of nonstandard terminology within indi-
vidual hospital information systems [13]. Most hospital
and laboratory information systems’ catalogs have very
similar data under diverse naming schemas. Time and
effort were required to understand the data and coding
of the electronic data elements recorded in the
individual institutional databases in this study. Cases
were found with different clinical event names, different
clinical event codes, but similar data distribution; or
cases were found with similar clinical event names, dif-
ferent clinical event codes, but different data distribu-
tion. After a long data cleaning process and discussion
with pediatric critical care experts and IT personnel at
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each institution, it was possible to map distinct clinical
event codes referring to the same data.

Another limitation in the development of the model
was the difference in the patient population between
the two PICUs. For instance, patients in the US PICU
had more arterial lines placed (51%) than patients in
the UK PICU (12%), but more patients in the UK
PICU were mechanically ventilated (66%) when com-
pared to patients in the US PICU (39%). Ideally, one
would like to train a model from several PICUs lo-
cated across different geographical regions and diffe-
rent levels of care with the hope that the model will
learn parameters that are generalizable when testing
on new data coming from other PICUs. However, this
approach is not always feasible, and most clinical de-
cision support algorithms found in the literature are
trained and tested from a single hospital, but rarely
validated across other hospitals. However, the fact
that the score functioned well in two different envi-
ronments with two heterogeneous populations could
also be seen as a strength. Indeed, our model general-
ized well when validated on the UK PICU (AUROC =
0.81) without extra tuning of the model parameters.
Nevertheless, further validation of our model using
data collected from PICUs across different hospitals
in the United States and other countries is needed.

Another disadvantage of labeling hemodynamic in-
stability events based on clinical interventions is that
interventions often occur before the patient was trans-
ferred to the PICU [14]. As this information was not
available in our databases, the issue was mitigated by
including in the analysis only patients who were stable
for at least 6 hours after being admitted to the PICU.

Future work

The model presented here was trained and validated on
retrospective data from two different hospitals. Al-
though the results are promising, prospective validation
work is also required to confirm our findings. The goals
of a prospective study would be to determine the clin-
ical value of running the algorithm and displaying the
risk score to clinicians in the ICU. Clinical outcomes of
such a study might include time to hemodynamic inter-
ventions, ventilator-free days, length of stay, and mor-
tality. An important part of study design would be the
integration of such predictive algorithms into the cli-
nical workflow, without which clinical outcomes would
not be improved.

Conclusion

This retrospective cohort study demonstrated that our
proposed prediction model derived from vital signs,
ventilator parameters, and laboratory values can be used
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to early identify patients at greater risk of hemodynamic
instability. The validation results indicate that the use of
our prediction model instead of an assessment based on
blood pressure or shock index measurements alone im-
proves the early detection of patients at higher risk of
hemodynamic instability.

Additional file

Additional file 1: is Figure S1 showing hemodynamic instability risk
profile for shock index (SI). A 14-year-old child with SI=1.2 will be at a
higher risk of hemodynamic instability than a 1 year old with the same SI
value (EPS 1840 kb)
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