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Abstract

Background: We aimed to investigate the diagnostic performance of S100 as an outcome predictor after out-of-hospital
cardiac arrest (OHCA) and the potential influence of two target temperatures (33 °C and 36 °C) on serum levels of S100.

Methods: This is a substudy of the Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial.
Serum levels of S100 were measured a posteriori in a core laboratory in samples collected at 24, 48, and 72 h after OHCA.
Outcome at 6 months was assessed using the Cerebral Performance Categories Scale (CPC 1–2 = good outcome,
CPC 3–5 = poor outcome).

Results: We included 687 patients from 29 sites in Europe. Median S100 values were higher in patients with a poor outcome
at 24, 48, and 72 h: 0.19 (IQR 0.10–0.49) versus 0.08 (IQR 0.06–0.11) μg/ml, 0.16 (IQR 0.10–0.44) versus 0.07 (IQR 0.06–0.11) μg/L,
and 0.13 (IQR 0.08–0.26) versus 0.06 (IQR 0.05–0.09) μg/L (p< 0.001), respectively. The ability to predict outcome was best at
24 h with an AUC of 0.80 (95% CI 0.77–0.83). S100 values were higher at 24 and 72 h in the 33 °C group than in the 36 °C
group (0.12 [0.07–0.22] versus 0.10 [0.07–0.21] μg/L and 0.09 [0.06–0.17] versus 0.08 [0.05–0.10], respectively) (p< 0.02). In
multivariable analyses including baseline variables and the allocated target temperature, the addition of S100 improved the
AUC from 0.80 to 0.84 (95% CI 0.81–0.87) (p< 0.001), but S100 was not an independent outcome predictor. Adding S100 to
the same model including neuron-specific enolase (NSE) did not further improve the AUC.

Conclusions: The allocated target temperature did not affect S100 to a clinically relevant degree. High S100 values are
predictive of poor outcome but do not add value to present prognostication models with or without NSE. S100 measured at
24 h and afterward is of limited value in clinical outcome prediction after OHCA.

Trial registration: ClinicalTrials.gov identifier: NCT01020916. Registered on 25 November 2009.
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Background
Mortality in comatose out-of-hospital cardiac arrest (OHCA)
patients admitted to an intensive care unit (ICU) is around
50%. Whereas initial ICU mortality is caused by
hemodynamic failure in the majority of cases, later morbidity
and mortality are due mainly to hypoxic brain damage [1, 2].
Withdrawal of life-sustaining therapies (WLST) based on
presumed poor neurological prognosis is the predominant
cause of death [2, 3]. To better guide therapy and to support
decisions on WLST, there is a need for early and accurate
outcome prediction tools in this severely ill population.
The S100 protein, a 21 kDa intracellular calcium-

binding dimer, is implicated in neuronal differentiation,
proliferation, and apoptosis [4]. Many subtypes of the
S100 protein are known, but the most studied in humans
are the brain-specific homodimers A1B (αβ) and BB (ββ)
[5, 6]. S100 is a biomarker candidate for outcome predic-
tion after cardiac arrest (CA) [7, 8], but previous small
studies yielded a wide range of cutoff values for a poor
outcome, and current guidelines do not advocate its use
[9]. S100 is present mainly in white matter, predominantly
in astroglial cells, in contrast to neuron-specific enolase
(NSE), which is found principally in neurons and neuroen-
docrine cells [10]. S100 is also commonly present in
extracerebral tissues [11, 12]. The Target Temperature
Management after Out-of-Hospital Cardiac Arrest (TTM)
trial, a multicenter clinical trial that randomized 939
patients to targeted temperature management of 33 °C or
36 °C, provides an opportunity to investigate the role of
S100 as a prognostic marker after OHCA [13].

Goals of this study
The aim of this study was to investigate the diagnostic
accuracy of S100 as an outcome predictor after CA and
whether serial S100 samples conferred an added value to
recommended prognostication models [9]. Another aim
was to investigate the potential influence of two target
temperatures (33 °C and 36 °C) on S100 release curves.

Methods
Study design and setting
All patients included in this study were part of the TTM
trial (from November 2010 to July 2013; ClinicalTrials.gov
identifier NCT01020916), in which two target temperature
regimens were compared in adult unconscious patients
admitted to an ICU after an OHCA of a presumed cardiac
cause [13]. The TTM trial design, statistical analysis plan,
and main results were published previously [13–15].
Patients were randomized to a target temperature of 33 °C
or 36 °C. Twenty-eight hours after the start of the interven-
tion, rewarming to 37 °C was started at a maximum speed
of 0.5 °C/h. The steering committee approved this prede-
fined substudy before trial completion and before starting
analysis of S100.

Study population
All patients included at sites participating in the biobank
substudy of the TTM trial were included. Seven TTM trial
sites did not participate in the biobank substudy, owing to
logistical issues and legal concerns. Data of patients who
died before the scheduled blood sampling and of patients
with incomplete sampling were treated as missing.

Sampling and measurements
After return of spontaneous circulation (ROSC), serum
blood samples were collected at 24, 48, and 72 h. All
samples were preanalytically processed at the different sites,
aliquoted, and frozen at −80 °C before shipment to the
Integrated Biobank of Luxembourg. S100 determination was
performed 6 months after trial completion at the clinical
biology laboratory of the Centre Hospitalier de Luxembourg,
and the measurements were therefore not available to the
treating physician during the trial.
Determination of S100 (S100A1B and S100BB) was

performed using a cobas e601 line with an electro-
chemiluminescence immunoassay kit (Roche Diagnostics,
Rotkreuz, Switzerland). The measurement range extended
from 0.005 to 39 μg/L. Samples with values above the
measurement range had to be diluted accordingly.
Functional sensitivity was set at 0.02 μg/L, and expected
normal values were <0.105 μg/L. In our laboratory,
between-run precision at concentrations of 0.18 and
2.33 μg/L was 2.6% and 3.6%, respectively.

Outcomes
We aimed to investigate S100 as a predictor of death and
cerebral performance after OHCA in both temperature
groups. We defined high S100 cutoff values as having a
false-positive rate (FPR) for a poor outcome of ≤5%.
The primary outcome in this study was neurological

function at 6 months, dichotomized into good or poor
outcome according to the Cerebral Performance Categor-
ies Scale (CPC) [16]. The CPC score classifies patients into
five categories: CPC 1 (no neurological disability), CPC 2
(minor neurological deficit), CPC 3 (severe neurological
impairment, dependent in everyday life), CPC 4 (coma),
and CPC 5 (death). CPC scores of 1 or 2 were considered
a good outcome, whereas CPC scores of 3–5 were consid-
ered a poor outcome. Neurological prognostication as well
as WLST were standardized and reported according to
the trial protocol [13–15].

Statistical analysis
All group comparisons of continuous measures were
performed using Wilcoxon’s test, whereas the chi-square
or Fisher’s exact test was used to assess categorical data.
Concentrations of S100 were compared over time using
the Wilcoxon signed-rank test.
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Univariate analysis consisted of plotting ROC curves of
S100 and computing the AUC for each time point.
Because there is no established cutoff value for S100 to
predict outcome, we took a broad approach in evaluating
potential cutoff values. Predictive cutoffs were determined
by maximizing the Youden index and by reporting
95–100% specificity for a poor neurological outcome.
Multivariable analyses were performed by adding S100
measurements first to a logistic clinical model of CPC
adjusted for targeted temperature and for the patients’
characteristics (target temperature, age, time to ROSC,
lactate level on admission, sex, bystander CPR, first moni-
tored rhythm, ROSC after bystander CPR and circulatory
shock on admission), and then to the same model includ-
ing both those variables and NSE measurements at 24, 48,
and 72 h. Bootstrap internal validation and multiple impu-
tations were further performed to correct sensitivity and
specificity, respectively, for optimism and to account for
missing data. The continuous Net Reclassification Index
(NRI) and the integrated discrimination improvement
(IDI) were computed to evaluate the added predictive

value of S100. DeLong’s test was used to compare AUCs
computed without multiple imputations, and a likelihood
ratio test was performed to compare the fit of the models.
Differences in survival until the end of the trial were
assessed using Kaplan-Meier curves and the log-rank test.
R software (version 2.15.2, http://www.r-project.org/; R

Foundation for Statistical Computing, Vienna, Austria) with
the packages ROCR, pROC, Hmisc, and rms was used to
perform the computations. A p value <0.05 was considered
statistically significant.

Results
Characteristics of study subjects
The TTM trial researchers investigated 939 patients, who
had no difference in mortality or neurological function
between the 33 °C and the 36 °C groups [13]. Overall, 700
consecutive patients from 29 different sites participated in
the biomarker substudy (Fig. 1a). A total of 1843 serum
samples from 687 different patients were analyzed (Fig. 1b).
The main patient characteristics are shown in Table 1. There
were no marked differences between our study population

a

b

Fig. 1 Study flowchart. Number of patients enrolled in the TTM trial and included in this substudy a; Number of samples included in this study
and reasons for eliminating serum samples from analysis b. TTM Target Temperature Management after Out-of-Hospital Cardiac Arrest trial, CPC
Cerebral Performance Categories Scale
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and the main TTM trial population or in neurological
outcome between temperature groups (data not shown).

S100 values by outcome group
Median S100 values were significantly higher in patients
with poor versus good outcomes at 24, 48, and 72 h respect-
ively: 0.19 (IQR 0.10–0.49) versus 0.08 (IQR 0.06–0.11) μg/
ml, 0.16 (IQR 0.10–0.44) versus 0.07 (IQR 0.06–0.11) μg/L,
and 0.13 (IQR 0.08–0.26) versus 0.06 (IQR 0.05–0.09) μg/L
(all p < 0.001). There was a significant decrease in serum
levels in both outcome groups over time (Fig. 2).

Influence of temperature on S100
S100 values were significantly higher at 24 and 72 h in
the 33 °C group than in the 36 °C group (0.12 [0.07–
0.22] versus 0.10 [0.07–0.21] μg/L and 0.09 [0.06–0.17]
versus 0.08 [0.05–0.10] at 24 and 72 h, respectively; p <
0.02). No significant difference was found at 48 h. When
comparing the groups by their outcome, we found sig-
nificantly higher median values in the good outcome
groups in the 33 °C arm than in the 36 °C arm: 0.08
(0.07–0.12) versus 0.07 (0.05–0.10) μg/L (p = 0.004), 0.08
(0.06–0.12) versus 0.07 (0.05–0.10) μg/L (p = 0.002), and

Table 1 Main demographic and Utstein data

33 °C (n = 344) 36 °C (n = 343)

Male sex, n (%) 292 (83) 273 (79)

Age, mean (SD) 64.2 (11.8) 63.4 (12.9)

First monitored rhythm, n (%):

Asystole or PEA 67 (19) 64 (18)

Non perfusing VT or VF 273 (77) 272 (78)

ROSC after bystander defibrillation 6 (2) 3 (1)

Unknown initial rhythm 6 (2) 8 (2)

Time from CA to ROSC, mean (SD) 30.5 (21.5) 31.1 (23.8)

Lactate, mmol/L, mean (SD) 6.6 (4.4) 6.6 (4.4)

Shock on admission, n (%) 45 (13) 43 (12)

Abbreviations: CA Cardiac arrest, CPR Cardiopulmonary resuscitation, PEA
Pulseless electrical activity, ROSC Return of spontaneous circulation, VF
Ventricular fibrillation, VT Ventricular tachycardia
Values are mean and SD or n (%)

Fig. 2 S100 time course. Box plots of S100 over the first 72 h after return of spontaneous circulation. Data are presented as median, quartile 1, quartile 3,
and lower fence (i.e., lowest value above [quartile 1–1.5 {quartile3− quartile1}]) and upper fence (i.e., greater value below [quartile 3 + 1.5 {quartile3−
quartile1}]). A statistical difference was found only for S100 values of patients with good outcomes, with higher values in the 33 °C group and between
good and poor outcome groups. * p< 0.05. CPC Cerebral Performance Categories Scale
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0.07 (0.05–0.10) versus 0.06 (0.04–0.08) μg/L (p = 0.002)
at 24, 48, and 72 h, respectively. There was no significant
difference in levels of S100 between temperature groups
in the poor outcome groups.

Predictive capacity of S100
The capacity of S100 to predict CPC score at 6 months
was first determined using ROC curves (Fig. 3a–c). The
best performance of S100 was at 24 h, with AUCs of
0.78 (95% CI 0.73–0.83) for patients treated at 33 °C and
0.82 (95% CI 0.77–0.87) for patients treated at 36 °C, as
well as an AUC of 0.80 (95% CI 0.77–0.83) when both
temperature groups were combined. At 48 h and 72 h,
AUCs were lower. AUCs did not differ significantly be-
tween temperature groups at any time point (p > 0.11).
Cutoff values with FPRs ranging from 0 (100% specifi-

city) to 5%, as well as with a maximized Youden index
for all patients, are presented in Table 2. Cutoff values
for both temperatures groups were not markedly differ-
ent, except for those with an FPR of 0 (data not shown).
Survival was associated with S100 levels and was sig-

nificantly lower in groups with higher S100 levels as de-
fined by quartiles (Fig. 4). At each time point, S100 was
a significant predictor of survival in both temperature
groups (p < 0.001).

Multivariable analysis
In multivariable analysis including the allocated target
temperature and baseline variables (age, sex, bystander
cardiopulmonary resuscitation, first monitored rhythm,
time to ROSC, lactate levels on admission, and circulatory
shock), all variables except target temperature, gender and
shock on admission were independent neurological out-
come predictors (AUC 0.80, 95% CI: 0.76–0.83, sensitivity
0.73, specificity 0.76) (data not shown). When serial S100
values were added to this model, none of the three S100-
measurements was an independent outcome predictor,
(Table 3) but the AUC of the model including serial sam-
ples improved to 0.84 (95%CI: 0.81–0.87, sensitivity 0.75,
specificity 0.81, DeLong test p < 0.001, likelihood test p <
0.001). Adding S100 improved the reclassification of pa-
tients significantly as demonstrated by continuous NRI
(0.53, p < 0.001) and IDI (0.08, p < 0.001). When adding ser-
ial S100 values to another, previously published model in-
cluding the same clinical characteristics and NSE values at
the 3 time-points (AUC 0.92, 95%CI: 0.90–0.94) [17], S100
did not further improve the AUC (0.92, 95%CI: 0.90–0.94,
sensitivity 0.81, specificity 0.92, DeLong test p = 0.13, likeli-
hood test p = 0.08) (Table 4).
We thereafter repeated the same multivariable analysis

without multiple imputations and in unconscious patients

a

c

b

Fig. 3 ROC curves with AUCs for S100 at 24 h (a), 48 h (b), and 72 h (c) after return of spontaneous circulation for outcome prediction according
to Cerebral Performance Categories Scale score at 6 months
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on day 3, with and without the addition of NSE. In each
analysis, S100 was not an independent outcome predictor.

Discussion
In this substudy of a large international trial, the use of
S100 for outcome prediction after OHCA was assessed.
S100 values were higher in patients with poor outcomes at
all time points, with the best capacity for S100 to predict
outcome being at 24 h. In multivariable analysis, S100
measurements at 24, 48, and 72 h were not significant
predictors of outcome. The joint effect of the three
measurements, however, improved the AUC, NRI, and
IDI of a predictive model that included established clinical
characteristics associated with outcome.
In previous, smaller studies, researchers compared S100 in

two target temperature groups and could not detect a signifi-
cant influence of temperature on S100 levels [18, 19]. In this
study, S100 values were higher at 24 and 72 h in the 33 °C
group than in the 36 °C group, which was explained by
higher S100 values among patients with good outcomes in
the 33 °C group. Because the intervention groups and their
outcomes were very similar in all aspects other than the
intervention temperature, we speculate that this difference

might be related to the targeted temperature. In addition, the
observed values among patients with good outcomes were
well below the suggested cutoff levels for S100. Although we
do not have a clear explanation for this result, we consider
the finding to be of negligible clinical relevance.
S100 could distinguish patients with good and poor out-

comes after OHCA because median values were higher in
the poor outcome group, and this has been described in
previous reports [18, 20–25]. It is noteworthy that S100
values declined over time in both temperature groups and
for both outcome groups, indicating an early peak of this
biomarker, which might explain why the first sample (at
24 h after ROSC) showed the best results [26]. We did not
collect blood samples before 24 h after ROSC, and higher
levels prior to 24 h cannot be ruled out. However, a clear
peak earlier than 24 h could not be determined in a previ-
ous study in which researchers investigated the kinetic
profile of S100 [23]. Other studies have also confirmed a
similar decline over time after 24 h in patients with good
and poor outcomes [22, 25]. The early release and subse-
quent decline may be explained by the short half-life of
approximately 2 h in combination with a low molecular
weight, allowing a rapid transition through the blood-
brain barrier [27]. This differentiates S100 from other

Table 2 S100 cutoff values

Time point Cutoff (μg/L) Sensitivity 95% CI Specificity 95% CI

S100 Youden 0.12 0.68 0.63–0.73 0.77 0.73–0.82

S100_5 0.25 0.41 0.35–0.46 0.95 0.93–0.97

S100_4 0.28 0.40 0.34–0.45 0.96 0.94–0.98

24 h S100_3 0.32 0.35 0.30–0.40 0.97 0.95–0.99

S100_2 0.36 0.32 0.26–0.37 0.98 0.96–0.99

S100_1 0.72 0.22 0.17–0.26 0.99 0.97–1.00

S100_0 2.59 0.10 0.07–0.13 1.00 0.99–1.00

S100 Youden 0.13 0.63 0.57–0.68 0.82 0.78–0.86

S100_5 0.25 0.36 0.30–0.41 0.95 0.93–0.98

S100_4 0.25 0.36 0.30–0.41 0.96 0.94–0.98

48 h S100_3 0.27 0.34 0.28–0.39 0.97 0.95–0.99

S100_2 0.28 0.34 0.28–0.39 0.98 0.96–0.99

S100_1 0.36 0.28 0.23–0.34 0.99 0.97–0.99

S100_0 3.67 0.05 0.03–0.08 1.00 0.99–1.00

S100 Youden 0.10 0.65 0.59–0.71 0.80 0.75–0.84

S100_5 0.19 0.35 0.29–0.40 0.95 0.92–0.97

S100_4 0.23 0.29 0.24–0.35 0.96 0.94–0.98

72 h S100_3 0.26 0.25 0.20–0.30 0.97 0.95–0.99

S100_2 0.35 0.20 0.15–0.24 0.98 0.96–0.99

S100_1 0.52 0.15 0.11–0.19 0.99 0.97–0.99

S100_0 1.83 0.05 0.02–0.08 1.00 0.98–1.00

S100 cutoff values for poor outcome prediction, pooled data for target temperature
S100 Youden indicates S100 cutoff with the compromise of the best sensitivity and specificity (maximized Youden index). The number following S100 refers to
the false-positive rate. Sensitivity and specificity are corrected by bootstrap internal validation
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biomarkers (e.g., NSE), where the kinetics between 24 and
72 h after CA are indicative of outcome [17]. The earlier
peak of S100 and its relative strength over NSE and other
biomarkers for outcome prediction at 24 h could poten-
tially be of clinical use under certain circumstances, such
as when prolonged care after rewarming might be consid-
ered unethical and several prognostic indicators point to a
poor outcome. Another argument in favor of using S100
as an adjunct in prognostication after CA might be its
availability in many centers, owing to its common use in
the assessment of traumatic brain injury [28].
The cutoff values for S100 in this study are comparable

with those described previously [7, 8, 25, 29]. Any differ-
ences might be due to different assays that might yield dif-
ferent values [20, 22, 23], different outcome measures
[29], and sample size [23]. As with other biomarkers, an
absolute cutoff value with an FPR of 0 for poor outcome
may be unrealistic and would limit its use. A more feasible
approach might be to choose a higher FPR, which might
be acceptable when used in combination with other pre-
diction tools [9]. In this study, a cutoff with an FPR
of 5% would correspond to an S100 serum level of
0.25 μg/L at 24 h after ROSC.
As with any other prognostication method, prediction

should be based on a protocol including a holistic

Fig. 4 Kaplan-Meier curves for prediction of survival at the end of the trial (primary endpoint of the Target Temperature Management after Out-of-Hospital
Cardiac Arrest trial) for S100 values at 24 h (a), 48 h (b), and 72 h (c) after return of spontaneous circulation. Separation into quartiles of serum S100 levels

Table 3 Multivariable analysis with multiple imputation: clinical
variables and S100

95% CI

S100 + clinical Effect Odds ratio Lower Upper p Value

Intercept −3.670 0.01 0.11 <0.001

S100 at 24 h 1.828 6.221 0.77 50.55 0.09

S100 at 48 h 0.873 2.395 0.13 45.81 0.56

S100 at 72 h 1.594 4.926 0.21 117.39 0.32

Target temperature 0.085 1.089 0.75 1.59 0.66

Age 0.062 1.064 1.05 1.08 <0.001

Time CA to ROSC 0.022 1.022 1.01 1.03 <0.001

Lactate level on admission −0.001 0.999 0.95 1.05 0.98

Sex −0.271 0.762 0.47 1.24 0.27

Bystander CPR performed −0.527 0.590 0.39 0.90 0.02

VT/VF versus PEA/asystole −1.431 0.239 0.13 0.43 <0.001

ROSC after bystander
defibrillation

−1.560 0.210 0.05 0.88 0.03

Shock on admission 0.160 1.173 0.62 2.21 0.98

Abbreviations: CA Cardiac arrest, CPR Cardiopulmonary resuscitation, PEA
Pulseless electrical activity, ROSC Return of spontaneous circulation, VF
Ventricular fibrillation, VT Ventricular tachycardia
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approach and with multiple tests and parameters [9, 30].
Clearly, NSE outperformed S100 for outcome prediction
after CA in the same patient cohort [17]. Adding S100
to our model including clinical characteristics and NSE
did not further improve the accuracy of the model. Simi-
lar results have also been described by others when S100
was added to NSE [25]. Using a multivariable model
with fewer variables, researchers in another study
suggested the usefulness of S100 over NSE on admission
[22]. Although the use of a combination of biomarkers
for outcome prediction is intriguing, we failed to
demonstrate any added value of S100 in a clinical model
including NSE.

Limitations and strengths
Biomarkers are unlikely to be affected by sedation, in con-
trast to some neurophysiological tests or the clinical
examination, and therefore they may be more objective
markers of brain injury. However, they are measured
intermittently, whereas their production or secretion and
metabolism are a dynamic process, underscoring the im-
portance of serial measurements. This study is a prede-
fined substudy of the TTM trial, and we acknowledge any
potential limitations of this trial. Not all patients included
in the TTM trial participated in the sampling, and not all
patients had a sample drawn at each time point. Because
of randomization stratified by site, we believe that this did
not have a significant influence on the results and that
there was no difference between our study cohort and the

main TTM trial cohort. We acknowledge that, according
to our study protocol, there was no blood sampling on
admission or prior to 24 h, which deprived us from
analyzing the potential value of very early S100 measure-
ments. Another limitation is that we had no external
quality control at the participating sites where samples
were collected and preanalytically processed.
The main strength of our study is the large sample

size of a predefined substudy of a multicenter clin-
ical trial investigating two target temperatures in co-
matose patients after OHCA. The TTM trial had
strict rules and protocols regarding prognostication
and how WLST was conducted [14]. In addition, all
the samples were analyzed at a single core laboratory
after the completion of the study, ruling out the
problem of variation between laboratories and limit-
ing the risk of “self-fulfilling prophecy” due to hav-
ing bedside access to the biomarkers.

Conclusions
There was no clinically important effect of two different
target temperatures on levels of S100. High S100 values
are predictive of poor outcome after OHCA but do not
add any real value to present prognostication models
with or without NSE. S100 measured at 24 h and
afterward is of limited value in clinical outcome
prediction after OHCA, especially in a setting where
NSE is available.

Table 4 Multivariable analysis with multiple imputation of clinical variables, S100, and neuron-specific enolase

95% CI

Model S100 + NSE + clinical analysis Effect Odds ratio Lower Upper p Value

Intercept −6.480 0.00 0.01 <0.001

S100 at 24 h 1.012 2.751 0.49 15.33 0.25

S100 at 48 h −1.808 0.164 0.00 6.89 0.34

S100 at 72 h 2.284 9.820 0.24 401.61 0.23

NSE at 24 h −0.041 0.960 0.93 0.98 <0.001

NSE at 48 h 0.065 1.068 1.04 1.10 <0.001

NSE at 72 h 0.026 1.026 1.00 1.05 0.02

Target temperature 0.187 1.206 0.76 1.91 0.43

Age 0.091 1.095 1.07 1.12 <0.001

Time CA to ROSC 0.009 1.010 1.00 1.02 0.17

Lactate level on admission 0.003 1.003 0.94 1.07 0.93

Sex −0.400 0.671 0.38 1.20 0.18

Bystander CPR performed −0.706 0.494 0.29 0.83 0.01

VT/VF versus PEA/asystole −1.062 0.346 0.17 0.72 <0.001

ROSC after bystander defibrillation −0.926 0.396 0.07 2.11 0.28

Shock on admission 0.356 1.428 0.68 2.99 0.34

Abbreviations: CA Cardiac arrest, CPR Cardiopulmonary resuscitation, NSE Neuron-specific enolase, PEA Pulseless electrical activity, ROSC Return of spontaneous
circulation, VF Ventricular fibrillation, VT Ventricular tachycardia
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Additional file 1: List of the ethical review boards that accepted the
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