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Abstract

Background: Metabolomics is a tool that has been used for the diagnosis and prognosis of specific diseases. The
purpose of this study was to examine if metabolomics could be used as a potential diagnostic and prognostic tool
for H1N1 pneumonia. Our hypothesis was that metabolomics can potentially be used early for the diagnosis and
prognosis of H1N1 influenza pneumonia.

Methods: 1H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to
profile the metabolome in 42 patients with H1N1 pneumonia, 31 ventilated control subjects in the intensive care
unit (ICU), and 30 culture-positive plasma samples from patients with bacterial community-acquired pneumonia
drawn within the first 24 h of hospital admission for diagnosis and prognosis of disease.

Results: We found that plasma-based metabolomics from samples taken within 24 h of hospital admission can be
used to discriminate H1N1 pneumonia from bacterial pneumonia and nonsurvivors from survivors of H1N1
pneumonia. Moreover, metabolomics is a highly sensitive and specific tool for the 90-day prognosis of mortality in
H1N1 pneumonia.

Conclusions: This study demonstrates that H1N1 pneumonia can create a quite different plasma metabolic profile
from bacterial culture-positive pneumonia and ventilated control subjects in the ICU on the basis of plasma
samples taken within 24 h of hospital/ICU admission, early in the course of disease.
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Background
H1N1 influenza infection is a major health burden that can
be life-threatening, particularly among the elderly and pa-
tients with comorbid diseases [1, 2]. In adults, influenza re-
mains the predominant viral cause of community-acquired
pneumonia (CAP) and has a relatively high mortality [3, 4].
The case fatality rate of influenza pneumonia in adults can
reach up to 30% in the intensive care unit (ICU). Approxi-
mately 5% to 9% of patients with influenza in the United
States, and 11% in Canada, require hospitalization. Further-
more, 13% to 45.3% of hospitalized patients with influenza
pneumonia are admitted to the ICU [5]. It is noteworthy

that from 12 April 2009 to 10 April 2010, there were
approximately 60.8 million cases of H1N1 (range 43.3
million–89.3 million) resulting in 274,304 hospitaliza-
tions (range 195,086–402,719) and 12,469 deaths
(range 8868–18,306) in the United States [6].
Early identification of patients with H1N1 influenza

pneumonia can play a critical role in disease management
by improving the early administration of antiviral drugs.
Delay in therapy for H1N1 influenza pneumonia has been
associated with increased ICU admission and mortality [7].
Biomarkers may facilitate early diagnosis and progno-

sis, as well as help determine response to treatment and
develop new insights into ongoing pathophysiologic pro-
cesses in viral pneumonia. One promising approach for
identifying biomarkers of disease is the use metabolomic
profiling. The application of metabolomics in the investi-
gation of various diseases has rapidly evolved and pro-
vides researchers with a powerful approach to gain new
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insights into the pathophysiologic mechanisms of disease
and enhance diagnostic and prognostic tools [8].
Targeted and nontargeted metabolomic methods such as

proton nuclear magnetic resonance (1H-NMR) spectros-
copy, gas chromatography-mass spectrometry (GC-MS),
and liquid chromatography-mass spectrometry allow for
the identification of more than 4000 metabolites in human
biofluids [9]. 1H-NMR and GC-MS analyses of biofluids
are widely used as potential tools with highly reproducible
results for the identification of metabolites [10].
Using nontargeted 1H-NMR and GC-MS approaches,

we tested the hypothesis that metabolomic profiling can
be applied to plasma samples drawn within 24 h of ad-
mission to the hospital to diagnose patients with H1N1
pneumonia vs. patients with bacterial CAP and venti-
lated ICU control subjects. In addition, we further hy-
pothesized that plasma metabolomics could be used for
the prognosis of mortality through separation of H1N1
nonsurvivors from survivors using samples drawn within
24 h of hospital admission.

Methods
Study subjects
Forty-two patients with confirmed influenza virus A
(H1N1) pneumonia were included in this study from
multiple Canadian centers by the University of

Manitoba. Only patients ≥18 years of age were included
in the study.
To diagnose H1N1, 31 noninfected ventilated control

ICU patients were selected on the basis of age- and sex-
matching to the patients with H1N1 (Table 1). Venti-
lated ICU control subjects were patients admitted to the
ICU postoperatively after an elective procedure (e.g.,
posterior cranial fossa or spinal surgery) if there was no
suspicion of infection and plasma was collected on day 1
of ICU admission while these patients were ventilated in
the ICU. Moreover, 29 culture-positive samples from pa-
tients with bacterial CAP were selected from a multicen-
ter study at the University of Pittsburgh for diagnostic
comparison of bacterial pneumonia with the patient co-
hort with H1N1 virus (Table 1). Bacterial CAP samples
were identified on the basis of clinical and radiologic cri-
teria as described previously [11]. The bacterial sources
of infection included different species, such as Strepto-
coccus pneumoniae, Staphylococcus aureus, Pseudo-
monas aeruginosa, and Escherichia coli.
Of 42 patients with H1N1, 21 patients consisting of 7

nonsurvivors and 14 survivors were used for the mortality
prognosis training set in H1N1 pneumonia. Table 2 shows
the demographics of the nonsurvivors and survivors used
for the training set for the mortality prognosis portion of
the study.

Table 1 Clinical and demographic characteristics of H1N1 patients vs. positive bacterial culture patients and ICU ventilated controls

Variable H1N1 patients (n = 29) Positive bacterial culture (n = 29)

Age yrs. (mean ± SD) 51.1 ± 13.2 70.4 ± 20.7

Male/Female 13/16 13/16

APACHE II/APACHE IIIa 23.5 ± 7.4 72.8 ± 24.4

ICU LOS* 20.1 ± 14.5 1.7 ± 3.2

Hospital LOS* 32 ± 23.8 10.4 ± 10.3

Smoker 13 17

Altered LOC 2 5

Renal Failure 2 1

CHF 3 6

Alcohol 3 4

Cerebrovascular Disease 3 4

Variable H1N1 patients (n = 42) ICU ventilated controls (n = 31)

Age yrs. (mean ± SD) 45.7 ± 14.6 50.6 ± 13.8

Male/Female 13/29 14/17

BMI (mean ± SD)* 35.2 ± 12.6 30.7 ± 7.6

APACHE II 22 ± 7.7 19.1 ± 5.7

ICU LOS* 20.6 ± 15.6 4 ± 4.9

Hospital LOS 31.5 ± 23.5 24.7 ± 33.9

SD standard deviation, (%) of subjects, unless otherwise indicated, LOS Length of Stay, DBA Days before admission, APACHE II Acute Physiology and Chronic Health
Evaluation II ICU scoring system, CHF congestive heart disease. aThe APACHE II score is for H1N1 and APACHE III is for positive bacterial culture, *reflects
statistically significant difference in groups p < 0.05
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Study design
This case-control study was nested within three cohorts
enrolled at the universities of Calgary, Manitoba, and
Pittsburgh. To determine whether metabolomics can be
used to diagnose H1N1 pneumonia, we compared 42 pa-
tients with H1N1 pneumonia with 31 age- and sex-
matched ICU patients who required mechanical ventila-
tion and 29 patients with H1N1 pneumonia with 29 sex-
matched patients with bacterial CAP. To determine
whether metabolomics could be used to predict mortality
among 42 patients with H1N1, we compared 14 survivors
and 7 age- and sex-matched nonsurvivors (ratio 2:1) at 90
days as a training set. A total of 42 patient samples were
examined, with 21 patient samples used as a “discovery”
cohort for the mortality study. The other 21 patient sam-
ples were used as a validation cohort; however, all of these
were survivors. All tested patients with H1N1 infection
had no initial detected bacterial coinfection.

1H-NMR spectroscopic analysis and metabolite
concentration profiling
1H-NMR spectroscopic analysis was performed in one-
dimensional mode for all samples using a 600-MHz
Bruker Ultrashield Plus NMR spectrometer (Bruker
BioSpin Ltd., Milton, ON, Canada). Details of the pulse
sequence can be found in the data acquisition section of
the supplement (see Additional file 1). Chenomx NMR
Suite 7.1 software (Chenomx Inc., Edmonton, AB,
Canada) was used to profile the 1H-NMR spectra for me-
tabolite identification and quantification using a nontar-
geted profiling approach in the profiler module [12]. We
used 4,4-dimethyl-4-silapentane-1-sulfonic acid as an in-
ternal standard for metabolite quantification [13].

GC-MS
GC-MS analysis was also performed on all samples using
an Agilent chromatograph 7890A (Agilent Technologies,
Santa Clara, CA, USA) coupled with a Waters GCT mass
spectrometer (Waters Corp., Milford, MA, USA), using a
gas chromatography time-of-flight mass spectrometry
technique. The mass spectrometer was programmed in the
range of 50–800 mass-to-charge ratio. Using Metabolite
Detector software (version 2.06; Institut für Biochemie &
Biotechnologie, Technische Universität Carolo-Wilhelmina
zu Braunschweig, Braunschweig, Germany), mass spectra
were processed and analyzed to detect compounds. The
Golm Metabolome Database [14] and National Institute of
Standards and Technology 2008 library [15] were used to
identify compounds. For sample preparation information,
please see the online supplement (see Additional file 1).

Multivariate data analyses
Unsupervised multivariate principal component analysis
(PCA) was performed to assess the data acquired on
plasma 1H-NMR metabolites and GC-MS features from
patients with H1N1 (n = 42) vs. ventilated ICU control
subjects (n = 31) and from patients with H1N1 (n = 29) vs.
patients with CAP with positive bacterial cultures (n = 29).
PCA was also performed as an exploratory model on all
identified plasma 1H-NMR and GC-MS data from the
training set of H1N1 samples (14 H1N1 survivors vs. 7
nonsurvivors matched by age and sex). The PCA model
was used to identify data grouping and outliers and to
examine the intrinsic differences between the two cohorts
for each analytical technique. The number of quantified
metabolites/features for PCA analysis of each study are
depicted in Additional file 2: Table S14.

Table 2 Clinical and demographic characteristics of H1N1 patients with laboratory-confirmed influenza H1N1 infection

Variables Non-survivor H1N1 patients (n = 7) Survivor H1N1 patients (n = 14)

Age yrs. (mean ± SD) 51.4 ± 18.3 50.2 ± 13.2

Male/Female 2/5 4/10

BMI (mean ± SD) 32.8 ± 11.7 35.2 ± 12.8

Race

Caucasian
First nation

4
2

11
3

APACHE II 23.2 ± 9.1 20.8 ± 8.3

ICU LOS 18.4 ± 7.8 18.5 ± 16.6

Symptoms DBA 5.2 ± 3.3 5.9 ± 3.2

Smoker 2 (28) 5 (35)

Alcoholism 2 (28) 2 (14)

Pregnancy 0 (0) 2 (14)

SD standard deviation, (%) of subjects, unless otherwise indicated, LOS Length of Stay, DBA Days before admission, APACHE II Acute Physiology and Chronic Health
Evaluation II ICU scoring system, CHF congestive heart disease. aThe APACHE II score is for H1N1 and APACHE III is for positive bacterial culture, *reflects
statistically significant difference in groups p < 0.05
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Orthogonal partial least-squares discriminant analysis
(OPLS-DA) was then performed to build prediction
models of H1N1 diagnosis and mortality. OPLS-DA was
used to maximize covariance between the measured var-
iables and the response variables (predictive classifica-
tions). The quality of the OPLS-DA model was verified
using three performance indicators: cross-validation ana-
lysis of variance (CV-ANOVA), R2Y, and Q2Y (see Add-
itional file 1 for more details). Additionally, the other
parameters used to describe the predictive models were
sensitivity, specificity, and AUROC. Potential con-
founders (e.g., age, sex, body mass index [BMI]) and co-
morbidities (e.g., asthma, chronic obstructive pulmonary
disease [COPD]) were examined for their importance
using orthogonal 2 partial least squares (O2PLS) model-
ing of mortality of H1N1 pneumonia.
Pathway analysis of potential biomarkers was

performed using MetaboAnalyst software (http://
www.metaboanalyst.ca). We also used Ingenuity Pathway
Analysis (IPA) software (version 3.1; Ingenuity Systems
Inc., Qiagen Bioinformatics, Redwood City, CA, USA) to
discover the most important biological networks using
significantly altered metabolites between cohorts. The
significantly changed metabolites were obtained through
multivariate data analysis; OPLS-DA was used to discrim-
inate metabolomic profiles between two groups.

Prediction set modeling
To obtain sensitivity, specificity, and AUROC data, we
performed a prediction test to create a misclassification
table for all discriminant analysis models for diagnosis
and prognosis studies. We repeated the process three
times to create randomly the prediction test and to aver-
age sensitivity and specificity. Moreover, for the progno-
sis of mortality study, the prediction sets were created
from current active models (work sets) by taking seven
random samples (two nonsurvivors and five survivors)
out of the OPLS-DA models three times and averaging
sensitivity, specificity, and AUROC. In addition, another
prediction model (validation) was tested using the co-
hort of 21 survivors who were not used in the former
prediction (test) set and 2 randomly selected nonsurvi-
vors. Misclassification tests showed 100% sensitivity and
100% specificity for this prediction group.

Univariate data analysis
Univariate analysis was performed as a complementary
method to multivariate statistical analysis for enhancing
the amount of information from the study and to serve as
a less complex way to understand the cohort differences.
We used MetaboAnalyst software for the univariate ana-
lysis and Student’s t test for evaluation of each variable in-
dividually to determine whether the means of two groups
were distinct for the diagnosis and prognosis studies. To

perform univariate analysis, both NMR and GC-MS data-
sets were normalized, followed by log transformation and
autoscaling. The important features in each dataset were
selected by t test with a threshold of 0.05.

Results
Diagnosis of H1N1 pneumonia based on a ventilated ICU
control population and patients with culture-positive
bacterial CAP
To assess the value of plasma metabolomics for the diag-
nosis of H1N1 pneumonia, patients with H1N1 pneumo-
nia, ventilated ICU control subjects, and patients with
CAP with positive bacterial cultures were used to explore
and create prediction models based on 29 patients with
H1N1 pneumonia vs. 29 sex-matched patients with CAP
with positive bacterial cultures and based on 42 patients
with H1N1 pneumonia vs. 31 age- and sex-matched
ventilated ICU control subjects (Table 1).

Metabolomic pattern of diagnostic cohorts
A PCA scatterplot of the entire 1H-NMR and GC-MS
datasets demonstrated that the H1N1 cohort could be dis-
tinguished from patients with CAP with positive bacterial
cultures (see Additional file 2: Figure S1a and b) and the
ventilated ICU control subjects (see Additional file 2:
Figure S2a and b). OPLS-DA models showed a clear dis-
crimination of metabolomic profiles of patients with
H1N1 from profiles of patients with CAP with positive
bacterial cultures (Fig. 1a and b) and ICU control subjects
(Fig. 2a and b).
Table 3 shows the prediction models using OPLS-DA to

discriminate plasma H1N1 samples from ICU control sub-
ject and positive bacterial culture CAP samples on the
basis of NMR and GC-MS datasets and number of metab-
olites that contributed in the separation between groups.
Q2 indicates an excellent separation between the plasma
metabolic profile of H1N1 and ICU control subjects,
whereas the prediction model for the NMR dataset is not
as high as the GC-MS dataset to separate H1N1 from posi-
tive bacterial culture CAP cohort data. There are a large
number of metabolites contributing to the separation of
patients with H1N1 from patients with CAP with positive
bacterial cultures and ventilated ICU control subjects, sug-
gesting that H1N1 pneumonia could create a disease-
specific metabolic profile quite distinct from the two other
cohorts (Table 4). These data show that plasma metabolo-
mics using 1H-NMR and GC-MS analytical platforms
could be applied as a diagnostic tool with high predictabil-
ity, sensitivity, and specificity for identification of H1N1 in-
fluenza pneumonia. The data show that H1N1 pneumonia
is accompanied by metabolomic changes in the concentra-
tion of some common metabolites (amino acids and ke-
tone bodies) and some specific metabolites compared with
patients with CAP with positive bacterial cultures and
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ventilated ICU control subjects. We also observed
that some metabolites had similar patterns of changes
in H1N1 in comparison to samples of patients with
bacterial CAP and ICU control subjects. H1N1 pneu-
monia samples showed increased concentrations of
dimethylamine, β-alanine, formate, and quinic acid
and a decreased concentration of alanine vs. the two
other cohorts. Overall, plasma metabolic profiles by

important metabolites/features showed clear differ-
ences between diagnosis of H1N1 compared to positive
bacterial culture and diagnosis of H1N1 compared
to ventilated ICU control subjects (Table 4).
Coefficient plots revealed the relative correlation of

metabolites and features that showed decreased and in-
creased concentrations in nonsurvivors vs. survivors and
in patients with H1N1 vs. ICU control subjects on the

CAP Positive 
Bacterial Culture 

H1N1

a

b

CAP Positive 
Bacterial Culture 

H1N1

Fig. 1 The orthogonal partial least-squares discriminant analysis (OPLS-DA) of patients with H1N1 vs. patients with CAP with positive bacterial
cultures showing the best possible discrimination. a OPLS-DA plot for proton nuclear magnetic resonance data (R2 = 0.824, Q2 = 0.657, P < 0.0001).
b OPLS-DA plot for gas chromatography-mass spectrometry data (R2 = 0.937, Q2 = 0.879, P < 0.0001). The x-axis is the prediction component that
shows differences between groups, and the y-axis shows the orthogonal component differences within the group. R2 represents goodness
of fit, Q2 represents a goodness of prediction, and the P value shows the significance level of the model (x-axis = predictive components,
y-axis = orthogonal component)
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basis of NMR and GC-MS datasets. Table 5 shows the
most important biological pathways for diagnosis and
prognosis based on multivariate data analysis using coef-
ficient plot and S-plot analysis. S-Plot analysis was used
to identify putative biomarkers on the basis of related
OPLS-DA models to choose metabolites/features with
high magnitude and high reliability (see Additional file 2:
Figures S6, S8 and S10).

Metabolic profile by univariate analysis (diagnosis study)
Univariate analysis was performed to show the mean,
SD, and P values of metabolites/features obtained by
NMR and GC-MS. Additional file 2: Tables S1 and
S2 show the significantly different metabolites (P < 0.05)
between H1N1 pneumonia and positive bacterial culture
pneumonia samples for NMR (n = 13) and GC-MS (n =
98). Additional file 2: Tables S3 and S4 also show the

ICU Controls

H1N1

ICU Controls

H

a

b

1N1

Fig. 2 The orthogonal partial least-squares discriminant analysis (OPLS-DA) of patients with H1N1 vs. ventilated ICU control subjects shows the best
possible discrimination. a OPLS-DA plot for proton nuclear magnetic resonance data (R2 = 0.889, Q2 = 0.789, and P < 0.0001). b OPLS-DA plot for gas
chromatography-mass spectrometry data (R2 = 0.963, Q2 = 0.946, P < 0.0001). The x-axis represents the prediction component that shows differences
between groups, and the y-axis represents the orthogonal component differences within the group. R2 represents goodness of fit, Q2 represents
goodness of prediction, and P value shows the significance level of the model (x-axis = predictive components, y-axis = orthogonal component)
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significantly different metabolites (P < 0.05) between pa-
tients with H1N1 pneumonia and ventilated ICU control
subjects for NMR (n = 27) and GC-MS (n = 57). Multi-
variate data analysis revealed more metabolites that were
significantly changed between the H1N1 pneumonia co-
horts and the two other cohorts on the basis of NMR
data, but the GC-MS findings did not show a large
difference in the number of metabolites between multi-
variate and univariate data analyses. Although the multi-
variate and univariate methods revealed high numbers of
overlapping metabolites/features, we found a different
pattern for more significant metabolites/features be-
tween multivariate and univariate methods in the diag-
nosis of H1N1 (Figs. 3 and 4).

Prognosis of mortality of H1N1
For the prognosis of 90-day mortality, prediction models
were built on the basis of the training set. There were no sta-
tistically significant differences (P< 0.05) on tested demo-
graphic variables between the survivor and the nonsurvivor
cohorts, except for the presence of fever, which was higher in
the survivor cohort (see Additional file 2: Table S15).

Metabolomic pattern of the prognostic cohorts
A PCA score plot of the entire 1H-NMR dataset based on
the first and second principal components demonstrated
that the 90-day nonsurvivor group could be distinguished
from the survivor group; that is, there was data clustering)
(see Additional file 2: Figure S3a). The PCA score plot of

Table 3 Summary of discrimination (OPLS-DA) modeling statistics for the diagnostic and prognosis of H1N1

Analytical tool R2Y Q2Y P value Sensitivity Specificity AUROC Metabolites/features

Discrimination (OPLS-DA) models for differentiation of H1N1 (n = 29) from sex-matched positive bacterial culture CAP samples (n = 29)

NMR 0.825 0.589 <0.0001 87 100 0.908 50

GC-MS 0.937 0.879 <0.0001 100 100 0.942 70 (known)

Discrimination (OPLS-DA) models for differentiation of H1N1 (n = 42) from age- and sex-matched ICU controls (n = 31)

NMR 0.889 0.789 <0.0001 100 100 0.921 55

GC-MS 0.981 0.971 <0.0001 100 100 0.959 68 (37 known)

Discrimination (OPLS-DA) models for prognosis of 90-day mortality in H1N1 (non-survivors (n = 7) vs. age- and sex-matched survivors (n = 14)

NMR 0.831 0.597 0.004 100 100 0.865 20

GC-MS 0.909 0.829 0.0001 100 100 0.909 63 (32 known)

Table 4 Most significant metabolites/ features changed between two cohorts for diagnosis and prognosis studies

Diagnosis of H1N1 pneumonia from
positive bacterial culture pneumonia

Diagnosis of H1N1 pneumonia
from ventilated ICU controls

Prognosis of mortality of H1N1 pneumonia
(non-survivors vs. survivors)

Decreased in H1N1 Increased in H1N1 Decreased in H1N1 Increased in H1N1 Decreased in H1N1
nonsurvivors

Increased in H1N1
nonsurvivors

NMR Citrate
Fumarate
3-Methyl,2-Isovalerate
Alanine
Tyrosine
Methionine
Histidine
4-Hydroxybutyrate

Acetoacetate
Beta-alanine
Formate
Dimethylamine
Carnitine
Glycine

Isopropanol
Citrate
Taurine
Glycine
2-Oxoglutarate
Glutamine
Alanine
Serine

Dimethylamine
Beta-alanine
Aspartate
Phenylalanine
Formate
3-Hydroxyisovalerate
Fumarate
O-Phosphocholine
Adipate
Choline
2-Hydroxyisovalerate
Proline
Ornithine

2-Oxoglutarate
Dimethylamine
Isopropanol
Carnitine
2-Hydroxisovalerate
Lactate
Phenylalanine
Acetate
Tyrosine

2-Aminobutyrate
Acetoacetate
2-Hydroxybutyrate
Arginine
3-Hydroxybutyrate

GC-MSa Uric acid
Tyrosine
Citric acid
Asparagine
Myoinositol
Lysine
Arabinonic acid
Threonine
Aspartic acid
Threonic acid

Gulonic acid
Pentadecane
2-amino Butanoic
acid
Alkane
Quinic acid
Benzoic acid

Galactose
Lactic acid
Glucose
Pyroglutamic acid
Galactopyranoside
Glyceric acid
Fructose
Beta alanine
Glycerol
Glycine
3-hydroxyl Butanoic acid
Phenylalanine

Heptadecanoic acid
Phosphoric acid
Hexadecanoic acid
Octadecenoic acid
Octadecane
Quinic acid

Threonic acid
Dodecane
Decanoic acid
2-Amino, Butanoic acid
Valine
Glycerol

Methionine
Pentadecane
4, Amino, Benzoic acid
Hydroxylamine

aThe unknown’s features have not been listed
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the features detected by GC-MS revealed similarly sepa-
rated clusters for H1N1 nonsurvivors and survivors (see
Additional file 2: Figure S3b).
Once data clustering was revealed, we analyzed the

metabolomic profiling data using supervised OPLS-DA

for modeling. Of the NMR data (Fig. 5a), 27 different me-
tabolites were used as potential variables (metabolites) to
separate nonsurvivors from survivors with a R2Y = 0.831
and a Q2Y = 0.597, indicating very good separation be-
tween the two cohorts at the plasma metabolomic level
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Fig. 3 Univariate analysis showing important metabolites/features between samples of patients with H1N1 pneumonia and bacterial pneumonia
samples. The top ten metabolites detected by proton nuclear magnetic resonance (first line) and gas chromatography-mass spectrometry (second
line) that have significantly changed in plasma between samples of patients with H1N1 pneumonia and culture-positive bacterial pneumonia
samples (units in normalized and scaled concentrations). The x-axis shows the specific metabolite, and the y-axis is the relative concentration
when samples of patients with community-acquired pneumonia are compared with the samples of patients with H1N1. The box-and-whisker
plots show the mean and SD of the metabolite

Table 5 Top biological pathways based on identified metabolites involved for diagnosis of and prognosis of H1N1

MetaboAnalyst
Pathway analysis

NMR GC-MSa

Diagnosis of H1N1 Pneumonia from
Positive Bacterial Culture Pneumonia

- Synthesis and degradation of ketone bodies
- Beta-alanine metabolism
- Glycine, serine and threonine metabolism
- Methane metabolism
- Glyoxylate and dicarboxylate metabolism
- Histidine metabolism

- Lysine degradation
- Inositol phosphate metabolism

Diagnosis of H1N1 Pneumonia from
Ventilated ICU Controls

- Taurine and hypotaurine metabolism
- Glycine, serine and threonine
- Beta-Alanine metabolism
- Citrate cycle (TCA cycle)
- Glyoxylate and dicarboxylate metabolism
- Phenylalanine metabolism

- Galactose metabolism
- Glycine, serine and threonine metabolism
- Pyruvate metabolism
- Phenylalanine metabolism

Prognosis of mortality of H1N1 pneumonia
(separation nonsurvivors from survivors)

- Synthesis and degradation of ketone bodies
- Arginine and Ornithine metabolism
- Arginine and Proline metabolism
- Phenylalanine metabolism
- Citrate cycle (TCA cycle)

- Beta-Alanine metabolism
- Galactose metabolism
- Alanine, Aspartate and glutamate metabolism
- Glycerolipid metabolism
- Pyruvate metabolism and glycolysis or glycogenesis

aTop biological pathways obtained using the knowns features
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for H1N1 mortality (Table 3). We used a statistical ap-
proach based on variable importance in the projection ≥1
to determine the number of analytes for the best predict-
ive model using SIMCA-P Version 13.0, Umetrics AB,
Umea, Sweden) [16].
As shown in Fig. 5b, the GC-MS OPLS-DA model

showed samples from the survivor and nonsurvivor
cohorts were well separated on the basis of 63 features
(32 known and 31 unknown). The model characteristics
were numerically significant, with a R2Y = 0.909 and a
Q2Y = 0.829, indicating an excellent model. To assess
the reliability of the OPLS-DA models for the NMR and
GC-MS data, CV-ANOVA was performed. The P values
for both models were 0.004 and 0.0001 for the NMR
and GC-MS models, respectively.
Using O2PLS discriminant analysis [17], we tested the

role of confounding factors in separation of nonsurvi-
vors from survivors, including patient characteristics and
comorbidities, but these did not affect the observed dis-
crimination to prognosticate the mortality for both
NMR and GC-MS analyses. This suggests that the differ-
entiation between the survivor and nonsurvivor groups
is based on disease metabolite changes rather than on
the roles of age, sex, and BMI in this study (see

Additional file 2: Figure S4a–c). Given these results, it
can be concluded that 1H-NMR and GC-MS are appro-
priate analytical tools to apply a metabolomic approach
for prognosis of 90-day mortality of patients with H1N1
influenza pneumonia on the basis of samples taken
within 24 h of hospitalization.

Metabolic profile by univariate analysis (prognosis study)
Univariate analysis showed that normalized concentra-
tions of 7 metabolites detected by 1H-NMR and the rela-
tive intensities of 19 features detected by GC-MS varied
significantly among nonsurvivors and survivors. The sum-
mary of all significant metabolites/features (P < 0.1) from
NMR and GC-MS are listed in Additional file 2: Tables S6
and S7 with their P values and mean (±SD) values of
variables in each group. A comparison of multivariate and
univariate approaches shows the differences in type and
number of metabolites for both NMR and GC-MS
datasets to separate nonsurvivors from survivors (see
Additional file 2: Tables S5 and S6). It was interesting to
note that using the multivariate statistical technique, we
observed more potential metabolites/features than in uni-
variate analysis to distinguish H1N1 nonsurvivor from
survivor cohorts, with these two analytical methods
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Fig. 4 Univariate analysis showing important features of metabolites between H1N1 pneumonia samples and ventilated ICU control samples. The
top ten metabolites/features detected by proton nuclear magnetic resonance (first line) and gas chromatography-mass spectrometry (second line)
that have significantly changed in the plasma between H1N1 pneumonia samples and ventilated ICU control samples (units in normalized and
scaled concentrations). The x-axis shows the specific metabolite, and the y-axis is the relative concentration when samples of patients with H1N1
are compared with the ventilated ICU control patient samples. The box-and-whisker plots show the mean and SD of the metabolite
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showing a very different metabolic profile pattern. Univar-
iate methods are used to simplify the interpretation of dis-
criminating metabolites individually. Interestingly, this
study showed that the univariate analysis could reject po-
tential metabolites with only small changes that failed to
have significant differences by t test, whereas they could
be more important when they were analyzed simultan-
eously with the other metabolites; that is, the metabolites
may not act independently on the outcome. Figure 6

shows all metabolites/features that are significantly differ-
ent between nonsurvivors and survivors detected by NMR
and GC-MS platforms using univariate analysis.

Metabolic pathway and function analysis
The important potential targets of metabolic pathway
analysis obtained using MetaboAnalyst for NMR and
GC-MS data showed an impact value ≥0.10. More de-
tailed analysis of the most relevant pathways is listed in

Survivors

a

b

Non-Survivors

Survivors

Non-Survivors

Fig. 5 The supervised orthogonal partial least-squares discriminant analysis (OPLS-DA) shows the best possible discrimination between nonsurvivors
and survivors of H1N1 infection. a OPLS-DA plot for proton nuclear magnetic resonance data (R2 = 0.831, Q2 = 0.597, P = 0.004). b OPLS-DA plot for gas
chromatography-mass spectrometry data (R2 = 0.909, Q2 = 0.829, P = 0.0001). The x-axis represents the prediction component that shows differences
between groups, and the y-axis represents the orthogonal component differences within the group. R2 represents goodness of fit, Q2 represents
goodness of prediction, and P value shows the significance level of the model (x-axis = predictive components, y-axis = orthogonal component)
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Table 6 Top network of biological pathways for diagnosis and prognosis studies based on the NMR and GC-MS datasets

Diagnosis of H1N1 pneumonia from
positive bacterial culture pneumonia

Diagnosis of H1N1 pneumonia
from ventilated ICU controls

Prognosis of mortality of H1N1 pneumonia
(nonsurvivors vs. survivors)

NMR 1. Amino Acid Metabolism, Molecular
Transport, Small Molecule Biochemistry

2. Drug Metabolism, Molecular Transport,
Small Molecule Biochemistry

1. Cell Cycle, Hepatic System Development and
Function, Cell-To-Cell Signaling and Interaction

2. Molecular Transport, Nucleic Acid Metabolism,
Small Molecule Biochemistry

3. Drug Metabolism, Molecular Transport,
Small Molecule Biochemistry

1. Increased levels of albumin.
2. Cell to cell signaling and interaction.
3. Cellular growth and proliferation
mechanisms.

GC-MSa 1. Amino Acid Metabolism, Molecular
Transport, Small Molecule Biochemistry

1. Cellular Compromise, Lipid Metabolism,
Small Molecule Biochemistry

2. Lipid Metabolism, Molecular Transport,
Small Molecule Biochemistry

3. Lipid Metabolism, Small Molecule
Biochemistry, Cellular Assembly and
Organization

4. Molecular Transport, Nucleic Acid
Metabolism, Small Molecule Biochemistry.

1. Lipid metabolism.
2. Amino acid metabolism

aThe generated networks obtained using known features
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Addtitional file 2: Tables S7-S12 and Figures S11–S13.
Table 5 shows the identified biological pathways in-
volved, based on the most important metabolites found
by NMR and GC-MS analyses, in the diagnosis of
H1N1 pneumonia based on culture-positive bacterial
pneumonia and ventilated ICU control subjects and
prognosis of mortality in H1N1 pneumonia. The path-
ways have been ordered by their impact values from
high to low in Table 5. Table 5 shows more differenti-
ated biological pathways involved in the diagnosis of
H1N1 from ICU control subjects compared with patients
with culture-positive bacterial CAP. This evidence sug-
gests that the difference in metabolomic profile between
patients with H1N1 pneumonia and ICU control subjects
is greater than that of patients with H1N1 pneumonia and
culture-positive bacterial pneumonia, based on the OPLS-
DA models (Table 4) as well as on the biological pathways.
It is interesting that a variety of biological pathways were
found in separation of H1N1 nonsurvivors from survivors
on the basis of metabolite changes. More potential net-
works of biological pathways were generated through the
use of IPA software in the diagnosis and prognosis of
mortality studies for both NMR and GC-MS datasets
(Table 6).

Discussion
A number of studies show the feasibility of using meta-
bolomics for the diagnosis and prognosis of noninfec-
tious and infectious pulmonary diseases in humans,
including asthma [18], COPD [19], tuberculosis [20],
hepatitis [21], sepsis [22–24], and pneumonia [25, 26].
We have profiled the plasma metabolite response to
pneumonia caused by infection with the H1N1 influenza
virus, infection with bacteria, and noninfected, ventilated
ICU control subjects, and we found that the metabolo-
mic profiles strongly predict a difference between pa-
tients with H1N1 pneumonia vs. culture-positive
patients with bacterial CAP and between patients with
H1N1 pneumonia vs. ventilated ICU control subjects.
Moreover, for H1N1 pneumonia prognosis, plasma
metabolic profiles were highly specific and predictive to
separate the two cohorts of H1N1 pneumonia 90-day
nonsurvivors and survivors, using plasma samples taken
on the first day of admission to the hospital. This study
shows that plasma metabolomics can be a diagnostically
and prognostically useful tool to diagnose H1N1 pneu-
monia and predict mortality among a ventilated ICU
population early in the course of the disease.
It is important to note that although the H1N1

pneumonia and culture-positive bacterial CAP cohorts
were collected using two different anticoagulants—ethy-
lenediaminetetraacetic acid, and sodium heparin—for
metabolomic profiling, there is strong evidence showing
comparability [27, 28]; however, this remains a potential

problem for this analysis. Pathway analysis showed that
some specific biological pathways were significantly
enriched in the diagnosis of H1N1 compared with
culture-positive bacterial CAP samples, when comparing
the diagnosis of H1N1 from ventilated ICU control sub-
jects, and when examining the prognosis of mortality.
Lysine degradation could be related to the role of lysine
in various mechanisms of fatty acid metabolism. Unpub-
lished data by the authors suggest a role of lipid-derived
metabolites in the prognosis of mortality in patients with
bacterial CAP. Lysine is known as an essential amino
acid that is not synthesized in humans, whereas lysine is
the product of meso-2,6-diaminopimelate/lysine biosyn-
thesis pathways for protein synthesis in gram-negative
and gram-positive bacteria [29], likely made available
from bacteria in the gastrointestinal tract.
Bacterial infections have been shown to be associated

with the elevation of a number of metabolites. For ex-
ample, systemic bacterial infection is accompanied by
elevation of histidine uptake in the human jejunum [30].
Moreover, histidine biosynthesis appears to occur in cer-
tain bacterial infections when compared with viral infec-
tion; in particular, pneumonia caused by chlamydia and
Acinetobacter infections increase histidine biosynthesis
[31]. Of note, histamine is a product of L-histidine me-
tabolism, and this is a major metabolite present in in-
flammation and potentially in bacterial pneumonia [32].
Another lung pathogen, P. aeruginosa, also causes eleva-
tion of histidine catabolism [33]. In addition, elevated in-
ositol phosphate metabolism has been observed with
Pneumocystis pneumonia [34] and S. aureus infection in
type II alveolar epithelial cells [35]. Methane metabolism
pathways have been shown to be elevated in bacterial
meningitis caused by pathogenesis of different species,
such as S. pneumoniae, N. meningitis, Haemophilus
influenzae, and S. aureus [36].
H1N1 infection does have effects on metabolism. In

terms of differentiation of H1N1 from ventilated control
subjects, taurine and hypotaurine metabolism showed
high pathway impact in pathway analysis. Taurine is an
important compound in bile acid conjugation in the
liver, suggesting some involvement of the liver during
H1N1 infection. Moreover, taurine is an important intra-
cellular free amino acid that is known as an antioxidant
and a neuromodulator and is also involved in regulation
of osmolarity in the neural retina and brain. Patients
with H1N1 showed lower concentration of taurine than
ventilated ICU control subjects [37–39].
Glycine, serine, and threonine metabolism is a com-

mon pathway to differentiate patients with H1N1 from
patients with bacterial CAP and ventilated ICU control
subjects (Tables 3 and 4). For example, protein kinase R
is an active protein in the H5N1 infection against the
antiviral effects of a serine-threonine protein [40]. The
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decreased concentration of glycine, serine, and threonine
in patients with H1N1 compared with ventilated ICU
control subjects as well as culture-positive patients with
bacterial CAP might implicate consumption of these
amino acids through viral metabolism.
In the mortality evaluation, 1H-NMR and GC-MS path-

way analyses revealed involvement of pathways associated
with metabolism of glutamate, aspartate, and related com-
pounds. When we examined these pathways in the con-
text of acute H1N1 pneumonia deaths, they pointed to
important clues in energy metabolism, glucose availability,
and protein synthesis. Not surprisingly, one could
hypothesize that interfering with any of these pathways
would result in a worse prognosis, as appears to be the
case. Pathway analysis points to the importance of energy
metabolism with the involvement of glutamate, pyruvate,
and alanine. On the basis of the findings of this study, it
would appear that disruption of amino acid metabolism
and gluconeogenesis pathways may be key factors in regu-
lating the difference between nonsurvivor and survivor re-
sponses to H1N1 infection. Pathogenically, despite the
primary involvement of the respiratory system, the liver
and kidneys are also targets for viral infection, which can
have significant effects on metabolism [41]; this is
highlighted in the online supplement.
Chong and Street [42] observed that clinical presenta-

tions in elderly patients did not appear to be useful for
prognosis of mortality, and our data support this finding.
Metabolomic profiling revealed that the pathophysio-
logic pathways initiated or affected by H1N1 infection
have a greater influence on the metabolic responses
leading to mortality than the other observed factors,
such as clinical demographics and serious comorbidities.
Overall, the metabolic response to H1N1 infection cre-

ates a very distinct metabolic signature compared with
that related to bacterial infection and ventilated ICU con-
trol subjects, which may be exploited for diagnostic pur-
poses and, potentially, to follow response to therapy
(Table 3). As expected, a large number and variety of top
networks of biological pathways are different between pa-
tients with H1N1 and ventilated ICU control subjects
(Table 6).
Few studies have evaluated the diagnostic ability of meta-

bolomics biomarkers in CAP [43]. Slupsky et al. [26] per-
formed an NMR-based study of urine in CAP. They found
that the urinary metabolic profile for pneumococcal pneu-
monia significantly differs from the profiles of viral and
other bacterial causes of pneumonia. The same group used
urine metabolic profiles for the successful diagnosis of two
important causes of CAP (S. pneumoniae and S. aureus) in
human and animal model studies [25, 44]. Furthermore,
Laiakis et al. [32] showed that the application of serum and
plasma metabolomic analysis can successfully distinguish
patients with severe pneumonia from community control

subjects. Thus, metabolomics is being used successfully on
a research basis for CAP diagnosis in humans, although it
has not been used for H1N1 pneumonia diagnosis and
prognosis. The diagnosis of H1N1 pneumonia requires the
presence of specific symptoms, a chest x-ray consistent
with an atypical pneumonia pattern, and a diagnostic poly-
merase chain reaction test. This paper provides evidence
for the potential use of plasma metabolomics as a further
diagnostic test for H1N1 pneumonia if future validation
studies confirm our findings.
While the Acute Physiology and Chronic Health Evalu-

ation II (APACHE II) has been used to compare mortality
between health care systems in the ICU, it is not a good
predictor of mortality in non-ICU patients [45]. APACHE
II cannot accurately predict mortality in H1N1 cohorts
(see Tables 1 and 2 and Additional file 2: S15). However,
we show that 1H-NMR and GC-MS analysis can provide a
highly predictive statistical model to predict nonsurvivors
from survivors of H1N1 pneumonia and that these
analytical tools have high sensitivity and specificity. Fur-
thermore, the usefulness of metabolomics for mortality
prediction in H1N1 is shown using ROC curves as well as
by linear regression (R2 score) when compared with APA-
CHE II scores of the patients (see Additonal file 2:
Table S13).
There is no single, best choice of metabolomic analytical

techniques, because each of these methods carries its own
advantages and disadvantages [46]. Although GC-MS is a
more sensitive method with high separation efficiency, high
spectral resolution, and high resolution to detect com-
pounds, NMR is more quantifiable and reproducible [46].
Examining a single time point in the pathologic

process is a potential limitation of this study, like in
most metabolomics studies performed to date. This can
be overcome only if sequential time points are examined.
For this study, only single-time-point material was avail-
able for metabolomic evaluation. Despite this limitation,
the data presented are compelling.
Other potential limitations of this study include the

relative small sample size and the fact that there was no
prospective validation. W used as many samples as were
available in Canada for this study from that time period.
We do wish more samples were available but they were
not. The samples size, though small, is still of sufficient
size to yield significant and compelling results. A repeat
study with more patients in the future would be of value
to validate our finding. Validation was done here in a
case-control format and not using a separate prospective
sample collection. This type of validation is acceptable
but not as powerful as a separate independent validation
study. These limitations are very difficult to overcome
given the limited samples available for analysis in this
time period. Certainly an independent validation study
would add tremendous validity to these initial findings.
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Like all metabolomics studies, there are technologic lim-
itations with the chosen techniques as the NMR study
component lacks sensitivity but it is quantitative and
specific: the GC-MS study component, though is more
sensitive, lacks in quantitative ability and in specificity
because of the limitations of the available GC-MS librar-
ies. Despite these limitations, because the two tech-
niques show similar findings, this adds to the validity of
the study and helps overcome some of the limitations.

Conclusions
This study demonstrates that plasma metabolomics reflects
a specific profile in patients with H1N1, an approach that
could importantly be applied to the diagnosis and progno-
sis of mortality in patients with H1N1 pneumonia. We
conclude that nontargeted metabolomics using 1H-NMR
and GC-MS is highly predictive with sufficient sensitivity
and specificity to prognosticate mortality by discrimination
of nonsurvivors from survivors of H1N1 influenza pneu-
monia. Also, analysis of the metabolome can accurately be
applied to identify H1N1 pneumonia cases from those with
culture-positive bacterial CAP and ventilated ICU control
subjects on the first day of admission to the hospital/ICU.
We speculate that metabolomic studies can be used as pre-
diction tools for timely administration of antiviral therapy
and other supportive treatments that could result in better
outcomes.
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