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Abstract

Background: The design complexity of critical care ventilators (CCVs) can lead to use errors and patient harm. In
this study, we present the results of a comparison of four CCVs from market leaders, using a rigorous methodology
for the evaluation of use safety and user experience of medical devices.

Methods: We carried out a comparative usability study of four CCVs: Hamilton G5, Puritan Bennett 980, Maquet
SERVO-U, and Dräger Evita V500. Forty-eight critical care respiratory therapists participated in this fully
counterbalanced, repeated measures study. Participants completed seven clinical scenarios composed of 16 tasks
on each ventilator.
Use safety was measured by percentage of tasks with use errors or close calls (UE/CCs). User experience was
measured by system usability and workload metrics, using the Post-Study System Usability Questionnaire (PSSUQ)
and the National Aeronautics and Space Administration Task Load Index (NASA-TLX).

Results: Nine of 18 post hoc contrasts between pairs of ventilators were significant after Bonferroni correction, with
effect sizes between 0.4 and 1.09 (Cohen’s d). There were significantly fewer UE/CCs with SERVO-U when compared
to G5 (p = 0.044) and V500 (p = 0.020). Participants reported higher system usability for G5 when compared to
PB980 (p = 0.035) and higher system usability for SERVO-U when compared to G5 (p < 0.001), PB980 (p < 0.001), and
V500 (p < 0.001). Participants reported lower workload for G5 when compared to PB980 (p < 0.001) and lower
workload for SERVO-U when compared to PB980 (p < 0.001) and V500 (p < 0.001). G5 scored better on two of nine
possible comparisons; SERVO-U scored better on seven of nine possible comparisons. Aspects influencing
participants’ performance and perception include the low sensitivity of G5’s touchscreen and the positive effect
from the quality of SERVO-U’s user interface design.

Conclusions: This study provides empirical evidence of how four ventilators from market leaders compare and
highlights the importance of medical technology design. Within the boundaries of this study, we can infer that
SERVO-U demonstrated the highest levels of use safety and user experience, followed by G5. Based on qualitative
data, differences in outcomes could be explained by interaction design, quality of hardware components used in
manufacturing, and influence of consumer product technology on users’ expectations.
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Background
Ventilators are a fundamental technology in critical care,
with their use expected to increase in demand in the
next 10 years [1]. Existing estimates of the proportion of
patients admitted to the intensive care unit (ICU) requir-
ing ventilator support range from 19 to 75 % in various
countries [2–5]. The use of ventilators is not without risk
to the patient, with potential harm arising from infections,
pneumothorax, ventilator-associated lung injury, and
oxygen toxicity [6–9].
Other significant ventilator-related risks are the associ-

ated use errors with the device [10–14]. Use errors could
cause patient harm in their operation if devices are not
properly designed to mitigate such risks [11, 15, 16].
The design of ventilators can negatively affect user
performance through poor user interfaces, interaction
modes, or difficulties during the physical setup of the
equipment [17].
The evaluation of use safety and the user experience of

medical devices can be conducted through usability
testing [18, 19]. Usability testing of medical devices has
become increasingly important in recent years, with the
US Food and Drug Administration (FDA) requiring med-
ical devices to satisfy minimum use safety requirements
prior to regulatory approval [20]. However, the testing
conducted by manufacturers for their FDA submissions is
often confidential, qualitative in nature, and not intended
to achieve statistical significance in validating the product
design [18]. As such, there are no means to compare the
outcomes of these studies with those of similar devices
on the market or with findings from other studies in
the literature [21].
To address this limitation, a comparative usability test

can be used, where multiple devices are evaluated con-
currently, following the same protocol [18, 22]. Existing
comparative studies available in the literature, however,
normally test two devices or variations of a device de-
sign, as with, for example, the testing of compact trans-
port ventilators [23], laparoscopic devices [24], and
inhalers [25]. Other studies that provide comparisons of
a larger number of devices rely on simplified methodologies
that lack scientific rigor [26, 27].
In order to compare the use safety and user experience

of critical care ventilators on the market, it was neces-
sary to design and run a comparative usability test with
a large enough sample of representative users to deter-
mine if there were statistically significant differences
among ventilators.
This study’s intent is to provide empirical evidence of

the difference in use safety and user experience of four
market-leading critical care ventilators available in North
America [28]: the Hamilton G5 (Hamilton Medical AG;
Bonaduz, Switzerland), the Covidien Puritan Bennett
980 (Covidien LP; Mansfield, MA, USA), the Maquet

SERVO-U (Maquet Critical Care AB; Solna, Sweden),
and the Dräger Evita Infinity V500 (Dräger Medical
GmbH; Lübeck, Germany). The findings explore the de-
sign of the ventilators in two dimensions of interest: use
safety and user experience (a combination of perceived
system usability and workload). The methodology pre-
sented in this paper enables users and decision makers
to better understand the differences between designs of
mechanical ventilators on the market, thereby support-
ing an understanding of user needs and procurement
processes alike [29].

Methods
Experimental design
In order to estimate the sample size and the feasibility of
a full-scale, powered study [30–32], it was necessary to
obtain a priori knowledge regarding the performance of
the selected ventilators. As this data was not available in
the literature, a pilot study with 13 participants was
performed. Sample size was calculated assuming a re-
peated measures design with possible contrasts, with 80 %
power and significance at the 5 % level [33] for use safety,
system usability, and workload. Pilot data indicated a
minimum of 48 participants was needed to discriminate
between how each of the ventilators performed using the
three selected metrics. This sample size allowed a full
counterbalancing of the order of ventilators and the use of
a repeated measures design to account for learning effects,
order effects, and fatigue [30–32]. Data analyses for the
pilot study and the full-scale study were performed by the
principal investigator, who was blinded to which dataset
corresponded to which ventilator, to ensure objectivity.
The study was conducted at the Clinical Skills and

Patient Simulation Center (CSPSC) at the University of
North Carolina School of Medicine (see Additional file 1)
and received ethics approval (HHF1520_3) by the Quorum
Review Independent Review Board (Quorum Review,
Seattle, WA, USA). Written consent was collected from all
study participants for the publication of their de-identified
data and accompanying images used in this manuscript.

Participants
A total of 13 respiratory therapists (RTs) participated in
the pilot study and 48 RTs in the full-scale study. RTs
were chosen as the target group for this study because
they are the primary daily users of ventilators in North
American hospitals. The RT in the United States is
responsible for “clinical decision-making and patient
education, [the RT] develops and implements respira-
tory care plans, applies patient-driven protocols, uti-
lizes evidence-based clinical practice guidelines, and
participates in health promotion, disease prevention,
and disease management.” [34]. RTs are responsible
for responding in emergency situations, initiating and
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managing ventilators, and providing airway manage-
ment in high-risk areas of North American hospitals,
such as ICUs and emergency departments [34, 35].
Participants for this study were recruited from three

hospital networks in North Carolina (Duke Health,
WakeMed Health & Hospitals, and UNC Health Care).
The CSPSC helped with recruitment by forwarding the
recruitment email to head RTs in the three hospital
networks, and a total of 143 RTs responded to the recruit-
ment email. A survey was used during recruitment for
selecting a group of participants with experience balanced
among the four families of ventilators, to identify RTs with
experience in critical care and to avoid recruiting partici-
pants with consulting relationships with manufacturers
(see Additional file 2).

Devices
Each participant performed the scenarios on all four
ventilators: the Hamilton G5 (G5), the Covidien Puritan
Bennett 980 (PB980), the Maquet SERVO-U (SERVO-U),
and the Dräger Evita Infinity V500 (V500). The order of
ventilators was fully counterbalanced, to avoid learning
and order effects, and a repeated measures study design
was used. These ventilators were selected for the study
as the most advanced models from the North American
market leaders [28].

Tasks and scenarios
The internationally recognized standard, ISO 80601-2-
12 — Particular requirements for basic safety and essen-
tial performance of critical care ventilators, details the
primary operating functions in a ventilator-neutral and
independent manner [36]. The 16 representative tasks
described in Table 1 were determined based on the
aforementioned standard.
A total of seven scenarios were developed to create rele-

vant clinical context, incorporating both typical clinical

scenarios and time-sensitive scenarios, such as response
to a loss of oxygen supply. The scenarios were designed by
the authors and later vetted through consultations with
RTs, ensuring accurate reflection of clinical context and
patient conditions. The scenarios and tasks were always
presented in the same order to maintain the clinical
context, with the exception of the alarm tasks, which
were randomized. All tasks had a 10-minute time
limit, with a 160-minute time limit per ventilator.
In order to address concerns over instructor-led manu-

facturer training [37], this study employed exploration-
based training [38] to increase realism and alignment with
the delivery of training in real conditions (which was con-
firmed during the pilot study). Participants were given a
set of learning objectives and asked to familiarize them-
selves with each of the four ventilators until they felt they
would be comfortable using them on a real patient. A test
administrator was available to answer questions and dem-
onstrate any functions. At a minimum, all participants
were required to demonstrate the ability to independently
ventilate the patient, adjust parameters, adjust alarm
limits, and browse menus.

Variables
Use safety, system usability, and workload were selected
as the three major measures of interest, since they correl-
ate to aspects of a medical device’s design quality and are
known to affect patient safety [20, 39–42]. These variables
were measured through a combination of observed use
and validated subjective scales, which measured partici-
pants’ perception of the four devices and provided a com-
prehensive view of both the RTs’ perception and actual
performance when using the ventilators. A combination
of observed use and self-reported perception was used
to protect this study from bias that may relate to the
“preference versus performance paradox” [43, 44].
Use safety was measured as inversely proportional to

the percentage of tasks (total of 16) in which participants
had a use error or close call (UE/CC); hence, a lower per-
centage represents a safer device. UE/CCs were collected
through well-established observation techniques [18–20].
A use error is defined as an action (or failure to act) that
directly compromises safety or effectiveness of a device or
that results in an undesirable or unintended treatment. A
close call is defined as an instance in which a user experi-
ences a usability issue that would result in a use error but
successfully recovers prior to compromising the task.
Two human factors experts independently observed each
participant completing the tasks and recorded whether a
UE/CC occurred during a task. This variable was categor-
ical (UE/CC or no UE/CC), so a clinical task was com-
pleted either with a UE/CC or without one. Following
data collection, observers compared ratings on a task-
by-task basis and agreed on any clarifications to be

Table 1 Description of scenarios and associated tasks, as well as
alarms and alerts

Scenario Tasks

1 Urgent ventilator parameter setup and start ventilationa,
adjust alarm limits

2 Activate expiratory pause, inspiratory pause

3 Read respiratory rate from a distance, adjust respiratory
rate, view data not available in default view, and suction

4 Leak test

5 Wean from pressure control to synchronized intermittent
mandatory ventilation and adjust trigger

6 Return to previous mode

7 Standby

Alarms/alerts Loss of oxygena and power failurea

aTasks where delayed action could potentially lead to harm to the patient
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sought during the participant debriefing. In cases where
the issue remained unclear, a third human factors pro-
fessional would independently resolve the tie through
video review.
System usability was evaluated through a combination

of the UE/CC metric described above and the Post-Study
System Usability Questionnaire (PSSUQ) [45]: a 16-
question, self-reported subjective evaluation of perceived
system usability. The PSSUQ has been used in healthcare
to evaluate clinical monitoring [46], anesthesia [47],
as well as telerehabilitation systems [48]. PSSUQ scores
range from 1 to 7, with lower scores representing better
perceived system usability.
Lastly, workload was evaluated using the National

Aeronautics and Space Administration Task Load Index
(NASA-TLX) [49, 50], a subjective workload assessment
tool that relies on six subscales (Mental Demand, Physical
Demand, Temporal Demand, Own Performance, Effort,
and Frustration). NASA-TLX has been used extensively in
healthcare [50] to evaluate medical devices such as venti-
lators [51], infusion pumps [39], and physiological moni-
toring displays [52]. The output from the NASA-TLX
instrument is a score ranging from 0 to 100, where lower
scores correspond to lower perceived workload.

Data collection
Each participant session lasted a maximum of 8 hours,
which included a 1.5-hour exploratory training period
followed by four 1.5-hour periods (with breaks between
periods), where participants performed the tasks on each
of the four ventilators. For each ventilator, participants
went through the scenarios described in Table 1 while
being observed by human factors experts responsible for
logging the occurrence of UE/CCs and for collecting
qualitative data about the performance of the participants.
At the end of each sequence of scenarios, participants
were presented with PSSUQ and NASA-TLX tools to
evaluate the ventilator they had just used, followed by a
debriefing interview to allow them to voice their opinions.
This same process was repeated for each of the three
remaining ventilators.

Data analysis
Statistical analyses were performed using SPSS Version
22.0 (IBM Corp, Armonk, NY, USA). Overall differences
in safety and user experience of the ventilators were ex-
plored through repeated measures analysis of variance
(ANOVA). Post hoc contrasts comparing any two venti-
lators were performed using multiple pairwise t tests.
[30, 31]. Bonferroni corrections were used due to the mul-
tiple comparisons performed, with other less conservative
corrections having minor effects on the number of statisti-
cally significant comparisons. Bonferroni correction can
be overly conservative in studies of this type, considering
that the outcome variables are correlated, increasing the
chance of false negatives [53]. For this reason, the results
of contrasts with Bonferroni correction and the post hoc t
tests without correction are both reported in the results
section (see Table 4 for uncorrected results).

Results
A summary indicating how each pair of ventilators com-
pares is presented in Table 2, where only the statistically
significant pair comparisons are presented. The SERVO-U
outperformed the other ventilators in seven out of nine
possible pair comparisons, and the G5 outperformed the
other ventilators in two out of nine possible comparisons.
The PB980 and the V500 did not outperform the other
ventilators.

Overall ventilator comparison
Table 3 outlines the percentage of tasks with UE/CCs,
the perceived workload of each ventilator on the NASA-
TLX scale, and the usability of the different ventilators
as measured by the PSSUQ scale. Box plots, presented
as an Additional file 3, provide a visual representation of
these data.
Repeated measures ANOVA showed statistically

significant differences on all three variables: UE/CC,
F(2.5, 119.1) = 6.101, p < 0.001, partial η2 = 0.115; NASA-
TLX, F(3, 141) = 16.629, p < 0.001, partial η2 = 0.261; and
PSSUQ, F(3, 141) = 17.821, p < 0.001, partial η2 = 0.275.
Residuals were normally distributed.

Table 2 Comparative description of how any two ventilators comparea

Safer Better perceived usability Lower workload

(Observed UE/CC) (PSSUQ) (NASA-TLX)

Hamilton G5 compared to Puritan Bennett PB980 G5 G5

Hamilton G5 compared to Maquet SERVO-U SERVO-U SERVO-U

Hamilton G5 compared to Dräger V500

Puritan Bennett PB980 compared to Maquet SERVO-U SERVO-U SERVO-U

Puritan Bennett PB980 compared to Dräger V500

Maquet SERVO-U compared to Dräger V500 SERVO-U SERVO-U SERVO-U

UE/CC use error/close call, PSSUQ Post-Study System Usability Questionnaire, NASA-TLX National Aeronautics and Space Administration Task Load Index
aOnly statistically significant results after Bonferroni corrections are presented
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Ventilator pair comparison
Six post hoc comparisons with Bonferroni correction
[30, 31, 53, 54] were performed for each metric, which
allowed pairs of ventilators to be ranked in terms of use
safety (UE/CC), system usability (PSSUQ and UE/CC),
and workload (NASA-TLX). The contrasts look at the
differences in the means (MD) for each metric and deter-
mine, after corrections, whether these differences are sta-
tistically significant (Table 4). After applying Bonferroni
corrections, nine out of the 18 possible comparisons were
statistically significant.
Participants experienced fewer UE/CCs with the

SERVO-U (9.1 %) than with the G5 (12.8 %), MD =
−3.646, p = 0.044, d = 0.40. Participants also experienced
fewer UE/CCs with the SERVO-U (9.1 %) than with the
V500 (16.9 %), MD = −7.813, p = 0.002, d = 0.55.
On the PSSUQ metric (ranging from 1 to 7), partici-

pants reported better usability for the G5 (2.7) than for
the PB980 (3.5), MD = −0.807, p = 0.035, d = 0.42. They

Table 3 Ventilator performance in the UE/CC, NASA-TLX, and
PSSUQ metrics

Use error and close calls
(% of tasks) Use safety

NASA-TLX
(0–100) Workload

PSSUQ (1–7)
System usability

Ventilator Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

G5 12.8 10.7 28.3 20.5 2.7 1.3

PB980 13.2 11.9 43.7 21.9 3.5 1.5

SERVO-U 9.1 11.0 21.5 17.1 1.7 0.9

V500 16.9 14.1 34.6 20.8 3.1 1.4

Lower scores on all three metrics correspond to better perception/performance
UE/CC use error/close call, NASA-TLX National Aeronautics and Space
Administration Task Load Index, PSSUQ Post-Study System Usability
Questionnaire

Table 4 Mean differences (MD = Vent1 – Vent2) between the ventilators with the results of the post hoc contrasts with Bonferroni
correction (df = 47), the post hoc t tests without corrections, and the effect sizes (Cohen’s d)

Contrasts with Bonferroni correction Post hoc t tests without correction Effect size

MD (Mvent1 −Mvent2) p t(47) p Cohen’s d

Use error/close calls (%) Use safety

Vent1 Vent2

G5 PB980 −0.391 1.000 −0.209 0.835 0.03

G5 SERVO-U 3.646 0.044a 2.804 0.007a 0.40

G5 V500 −4.167 0.292 −2.024 0.049a 0.29

PB980 SERVO-U 4.036 0.149 2.319 0.025a 0.33

PB980 V500 −3.776 0.287 −2.032 0.048a 0.29

SERVO-U V500 −7.813 0.002a −3.824 <0.001a 0.55

NASA-TLX (0–100) Workload

Vent1 Vent2

G5 PB980 −15.449 < 0.001a −4.404 < 0.001a 0.64

G5 SERVO-U 6.765 0.153 2.308 0.025a 0.33

G5 V500 −6.379 0.547 −1.725 0.091 0.25

PB980 SERVO-U 22.214 < 0.001a 7.524 < 0.001a 1.09

PB980 V500 9.070 0.072 2.615 0.012 0.38

SERVO-U V500 −13.144 < 0.001a −4.323 < 0.001a 0.62

PSSUQ (1–7) System usability

Vent1 Vent2

G5 PB980 −0.807 0.035a −2.884 0.006 0.42

G5 SERVO-U 0.935 < 0.001a 4.363 < 0.001a 0.63

G5 V500 −0.452 0.508 −1.761 0.085 0.25

PB980 SERVO-U 1.742 < 0.001a 7.456 < 0.001a 1.07

PB980 V500 0.354 1.000 1.195 0.238 0.17

SERVO-U V500 −1.388 < 0.001a −6.221 < 0.001a 0.87

Negative MD values representing Vent1 performing better than Vent2
aStatistically significant results
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also perceived better usability for the SERVO-U (1.7)
compared to the G5 (2.7), PB980 (3.5), and V500 (3.1),
MD = −0.935, p < 0.001, d = 0.63; MD = −1.742, p < 0.001,
d = 1.07; MD = −1.388, p < 0.001, d = 0.87, respectively.
Lastly, on the NASA-TLX metric (ranging from 0

to 100), participants reported lower workload for the G5
(28.3) compared to the PB980 (43.7), MD = −15.449,
p < 0.001, d = 0.64. They also reported lower workload for
the SERVO-U (21.5) compared to the PB980 (43.7)
and V500 (34.6), MD = −22.214, p < 0.001, d = 1.09 and
MD = −13.144, p < 0.001, d = 0.62, respectively.
Effect sizes were within the 0.4 to 1.09 range, with most

comparisons having medium (d > 0.5) and strong (d > 0.8)
effect sizes (see Table 4 for the complete results) [33].

Demographics
Data were collected from 48 participants for the full-scale
study, out of which 34 % were male (n = 16) and 66 %
were female (n = 32), with 68 % of the participants being
between the ages of 25 and 45 years old (n = 33). As for
experience, 63 % of the RTs who participated in the study
(n = 30) had five or more years of experience as an RT.
A perfect balance of participants’ level of experience with

each of the ventilators was not possible due to uneven
market share of the ventilators. However, using the data
collected through the recruitment survey, multiple regres-
sion models were performed for all variables collected in
the study, showing only minor effects on PSSUQ scores for
the PB980, F(4,43) = 4.796, p = 0.003, adj. R2 = 0.24, where
only the experience with the PB980 (p = 0.044, β = −0.268)
and the G5 (p = 0.034, β = −0.347) had an effect on the
PSSUQ score for the PB980. All other variables collected
in this study were not influenced by the experience with
the ventilators.

Discussion
The intent of this study was to provide empirical evidence
of the differences in use safety and user experience of four
market-leading critical care ventilators available in North
America. As the scenarios were the same for all four ven-
tilators, the results presented in this paper suggest that the
different user interfaces and interaction designs, as well as
the quality of the hardware used, may have had an impact
on user performance and perception. Additionally, the re-
sults reinforce the importance of user interfaces and user
interaction in the design of medical technology [55–57]
as well as in the quality of the hardware used in manufac-
turing. For instance, the lack of sensitivity of the G5’s
touchscreen proved to be a barrier for task completion and
a significant source of frustration, while the SERVO-U’s
user interface was praised by the participants. The design
of a medical technology is a factor that can strongly
influence user experience and user performance, as widely
discussed in the medical device and critical care literature

[55, 57–59]. These results are also of critical importance
for patient safety as they serve as an indicator of which
medical technology is less likely to produce adverse events
[55, 60, 61] arising from the operation of the devices.
The four ventilators were compared using repeated

measures ANOVA, and we found statistically significant
differences on all three variables (NASA-TLX, PSSUQ,
UE/CC), showcasing medium (partial η2 > 0.06) to large
(partial η2 < 0.13) effect sizes [33]. These results validate
the sensitivity of our study design to discriminate the
performance of the ventilators.
The participants’ opinions were further supported

by the results of the paired contrasts through repeated
measures t test. The data from Table 2 show that SERVO-
U outperformed other ventilators in seven out of nine
comparisons with other ventilators, showing medium to
large effect sizes. These results indicate that partici-
pants’ perceptions of the SERVO-U’s superior user
interface were reflected in the subjective and objective
data collected in the study. SERVO-U showed safer per-
formance (measured through UE/CC) when compared to
the G5 and the V500, better perceived usability when
compared to any of the three other ventilators, and lower
perceived workload when compared to the PB980 and the
V500. Next, the Hamilton G5 outperformed the PB980,
both in self-reported usability and workload. The PB980
and the V500 did not outperform any ventilator in this
study. Within the scope of this project, the SERVO-U,
followed by the G5, demonstrated the highest levels of use
safety and user experience, both factors that can directly
impact patient safety [20, 40–42].
Using only the quantitative results, it is not possible to

ascertain which specific factors influenced user perform-
ance. Hence the importance of also collecting qualitative
data in the form of observations to further enrich the
analysis [18, 20]. The qualitative data also collected in
this study indicate that the choices of interaction model
of each ventilator (e.g., how to select information on the
screen, adjusting settings, and confirming) seem to interfere
with task completion and affect users’ overall percep-
tion of the devices. A more detailed description of oper-
ational difficulties and safety implications of design should
be explored in future publications, promoting an in-depth
assessment of problems observed in this study.
The method used provided a comprehensive view of

user experience and use safety of ventilators. NASA-TLX
[49, 50], PSSUQ [45], and UE/CC [18–20] have dem-
onstrated their capacity for discriminating participants’
performance on the ventilators, as well as for ranking
the performance of medical devices available on the
market. Even after applying Bonferroni corrections [53],
our methodology was still able to discriminate the ventila-
tors in 50 % of the possible comparisons (9/18 cases).
In Europe, the tasks completed by RTs in this study
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are normally performed by nurses and doctors. Future
studies could potentially compare the performance of RTs
in North America with that of nurses and physicians
in Europe.
Ultimately, the goal of this methodology is to support

the design and/or selection of the safest medical devices
on the market. The FDA, as well as researchers in patient
safety, all posit the strong relationship that medical device
usability has with use and patient safety [20, 40–42],
where devices with poor usability can potentially lead to
harm to the patient. Hence, such a strong relationship
should be reflected in our results. This effect was observed
when comparing the SERVO-U with the V500 and G5
but not when comparing the SERVO-U to the PB980.
This difference was a result of the conservative nature
of Bonferroni corrections [53]. The uncorrected UE/CC
comparison of the SERVO-U and PB980 is significant
(see Table 4), further supporting the relationship
already discussed in the literature between usability and
use safety.
In terms of further exploring the safety of medical

technology, several studies in critical care that primarily
focus on general characteristics and technical perform-
ance of medical devices would benefit from the rigorous
methodology presented in this paper, to afford the evalu-
ation of the human component on the use of technol-
ogy, for example, studies of point-of-care technology
[62] or emergency and transport ventilators [63], as well
as those evaluating the effectiveness of electronic phys-
ician order entry in the ICU [59]. The effect of the human
component has been extensively discussed in the critical
care literature [58, 64, 65], describing how the design of
human–machine interfaces (or of medical device user in-
terfaces) play an important role in the safety of critical
care technology [56, 57].
Limitations of this study include the fidelity of simu-

lated conditions and that only four ventilators were
tested. Only RTs were included in the study, as opposed
to nurses and physicians, who tend to be primary users
outside North America. Additionally, the recruitment
criteria and the structure of the demographic data limited
our ability to run a regression analysis to evaluate the
effect of different demographics variables on the variables
being measured. Our study was not powered to run such
regression analysis.
Lastly, this study was sponsored by the Maquet Getinge

Group. Precautions and safeguards were taken to ensure
the independence of the research. The study design,
development of the methodology, selection of variables,
data analysis, and manuscript preparation were made in-
dependently of the project sponsor. As we did not know
how the ventilators would perform, a pilot study was used
both for the calculation of sample size and to test the
hypothesis that there would be measurable differences

between ventilators. To further the independence of our
research, all the statistical analyses were performed by the
principal investigator, who was blinded to the identity of
the ventilators.

Conclusions
This study provides empirical evidence on how the four
ventilators from market leaders compare and highlights
the importance of the design of medical technology.
Within the boundaries of this study, we can infer that
the SERVO-U ventilator demonstrated the highest levels
of use safety and user experience, followed by the G5.
Based on qualitative data collected during this study,
differences in outcomes could be explained by interaction
design, quality of the hardware components used in
manufacturing, and influence of consumer product tech-
nology on users’ expectations. Ultimately, the results pre-
sented in this paper provide evidence of the feasibility and
potential of novel methodology comparative usability
testing in identifying the safest and most usable medical
technology on the market, supporting the selection of the
safest medical technology and the design of the next
generation of devices.
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Patient Simulation Center at the University of North Carolina School of
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Additional file 2: Recruitment survey used in this study. (PDF 641 kb)

Additional file 3: Box plots showing the performance of the four
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outliers. Lower scores on all three metrics correspond to better perception/
performance. (PDF 72.4 kb)
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