Guo et al. Critical Care (2016) 20:226

DOI 10.1186/513054-016-1396-0 Critical Ca re

RESEARCH Open Access

Mechanical ventilation strategies for ® e
intensive care unit patients without acute

lung injury or acute respiratory distress

syndrome: a systematic review and

network meta-analysis

Lei Guo', Weiwei Wang', Nana Zhao, Libo Guo, Chunjie Chi, Wei Hou, Angi Wu, Hongshuang Tong, Yue Wang,
Changsong Wang™ and Enyou Li"

Abstract

Background: It has been shown that the application of a lung-protective mechanical ventilation strategy can
improve the prognosis of patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS).
However, the optimal mechanical ventilation strategy for intensive care unit (ICU) patients without ALl or ARDS
is uncertain. Therefore, we performed a network meta-analysis to identify the optimal mechanical ventilation
strategy for these patients.

Methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library,
EMBASE, MEDLINE, CINAHL, and Web of Science for studies published up to July 2015 in which pulmonary
compliance or the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO./FIO,) ratio was assessed in
ICU patients without ALI or ARDS, who received mechanical ventilation via different strategies. The data for study
characteristics, methods, and outcomes were extracted. We assessed the studies for eligibility, extracted the data,
pooled the data, and used a Bayesian fixed-effects model to combine direct comparisons with indirect evidence.

Results: Seventeen randomized controlled trials including a total of 575 patients who received one of six
ventilation strategies were included for network meta-analysis. Among ICU patients without ALl or ARDS,
strategy C (lower tidal volume (VT) + higher positive end-expiratory pressure (PEEP)) resulted in the highest
PaO,/FIO, ratio; strategy B (higher VT + lower PEEP) was associated with the highest pulmonary compliance;
strategy A (lower VT + lower PEEP) was associated with a shorter length of ICU stay; and strategy D (lower
VT + zero end-expiratory pressure (ZEEP)) was associated with the lowest PaO,/FiO, ratio and pulmonary
compliance.

Conclusions: For ICU patients without ALl or ARDS, strategy C (lower VT + higher PEEP) was associated with
the highest PaO,/FiO, ratio. Strategy B (higher VT + lower PEEP) was superior to the other strategies in improving
pulmonary compliance. Strategy A (lower VT + lower PEEP) was associated with a shorter length of ICU stay, whereas
strategy D (lower VT + ZEEP) was associated with the lowest PaO,/FiO, ratio and pulmonary compliance.
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Background

It has been shown that the application of lung-protective
mechanical ventilation with a low tidal volume can
improve the prognosis of patients with acute lung in-
jury (ALI) or acute respiratory distress syndrome
(ARDS) [1-3]. Several clinical studies have attempted
to optimize the ventilator management strategy to im-
prove oxygenation and lung compliance, thereby re-
ducing the length of intensive care unit (ICU) stay
and the mortality of ICU patients without ALI or
ARDS [4-6]. However, the optimal mechanical venti-
lation strategy for ICU patients without ALI or ARDS
is uncertain.

Clinical data show that patients without a diagnosis of
ALI or ARDS can benefit ventilation with a low tidal
volume [4, 7]. Schultz et al. [7] concluded that the initial
ventilator setting, high tidal volume, may be associated
with lung injury in patients without ALI or ARDS. Serpa
Neto et al. [8] used a traditional pairwise meta-analysis
to systematically evaluate ventilation strategies such as
high and low tidal volume. Their conclusions were as
follows: compared to ventilation with a higher tidal vol-
ume, protective ventilation with lower tidal volumes at
the onset of mechanical ventilation was associated with
better clinical outcomes, including a shorter length of
hospital stay, lower mortality, fewer pulmonary infec-
tions, and less atelectasis, among patients without ALI
or ARDS.

In addition to tidal volume, there are other factors in
the overall ventilation strategy, such as positive end-
expiratory pressure (PEEP), recruitment maneuver (RM),
and respiratory ratio. Tidal volume and PEEP play
important roles. However, traditional pairwise meta-
analysis can only be used to compare specific factors
between ventilation strategies and cannot be used to
compare the entire set of parameters relevant to differ-
ent ventilation strategies. Therefore, tidal volume and
clinical outcomes of different comprehensive ventilation
strategies using a specific tidal volume and PEEP cannot
be compared by traditional pairwise meta-analysis. Ac-
cordingly, the results obtained from traditional pairwise
meta-analyses have significant limitations. Fortunately, a
network meta-analysis is advantageous for the evaluation
of the comparative effectiveness of multiple interven-
tions, even when some parameters might not have been
directly compared. Additionally, network meta-analysis
has the potential to reduce the uncertainty in treatment
effect estimates [9, 10]. Given these advantages, we used
a network meta-analysis to search the literature for data
examining the optimal tidal volume and PEEP in
patients without ALI or ARDS. Based on these data, we
divided the ventilation mode into six types and consid-
ered each ventilation mode as a unique ventilation strat-
egy. Subsequently, the effectiveness and safety of various
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ventilation strategies were compared to identify the opti-
mal ventilation strategy for ICU patients without ALI or
ARDS.

Methods

We conducted our systematic review in accordance with
the methods recommended in the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [11].

Literature search

The trials were identified through electronic and manual
searches. We searched the Cochrane Central Register of
Controlled Trials (CENTRAL) in the Cochrane Library,
EMBASE, MEDLINE, CINAHL, and Web of Science
using a combination of MeSH terms and text words. We
did not restrict our search based on language or year of
publication. The most recent search date was July 2015.
We reviewed the reference lists of published meta-
analyses. In addition, we manually searched the bibliog-
raphies of randomized controlled trials, meta-analyses,
and systematic reviews for relevant studies that may
have been missed in the initial electronic search.

Inclusion and exclusion criteria

The study inclusion and exclusion process was con-
ducted separately by two groups. When there was a
discrepancy between the two groups, the selection com-
mittee met to reach a consensus on the inclusion or ex-
clusion of the disputed article. We first excluded the
following types of articles: reviews, retrospective studies,
observational studies, case reports, animal studies, stud-
ies conducted on children, studies examining only psy-
chological mechanisms, unrelated studies (such as
studies of mechanical ventilation in patients with
ARDS), duplicate reports, studies involving repeated ex-
periments (commentary articles on specific studies or
secondary analyses of experimental data), and nonrando-
mized trials. Ultimately, randomized controlled trials
examining mechanical ventilation in ICU patients with-
out ALI or ARDS were included. All of the included
studies were of relatively high quality with a low risk of
bias. No studies were excluded because of quality
concerns.

Outcome measures and data extraction

The extracted data included basic study information
such as the experimental design, experimental period,
country of the study, inclusion criteria, age and gender
of the included patients, detailed experimental proce-
dures, specific mechanical ventilation settings, clinical
outcomes, and safety outcomes of the patients. The pri-
mary outcome of this study was the PaO,/FiO, ratio. If
multiple PaO,/FiO, ratios were presented in a report,



Guo et al. Critical Care (2016) 20:226

the last result was used. The secondary outcomes of this
study were pulmonary compliance and the duration of
ICU stay. Two groups extracted the data separately and
then performed comparison and verification together. If
necessary, we contacted the corresponding authors to
seek assistance in the case of missing data and sent a
table containing the extracted data to those authors for
supplementary data or verification.

Ventilation strategies

In this network meta-analysis, the parameters of ventila-
tion strategies for ICU patients without ARDS were spe-
cified. Lower PEEP was defined as PEEP lower than 10
mmHg, and higher PEEP was defined as PEEP higher
than or equal to 10 mmHg [12]. Lower tidal volume was
defined as lower than or equal to 8 ml per kg predicted
body weight, and higher tidal volume was defined higher
than 8 ml per kg predicted body weight [13]. Accord-
ingly, six ventilation strategies were obtained (Table 1).

Statistical analysis

Network meta-analysis combines the direct and indirect
evidence for all relative treatment effects and provides
estimates with maximum power [14-16]. A network
meta-analysis was performed using the GeMTC [17]
package in R (i386 3.0.2). In this analysis, to maximize
accuracy and power, the mean difference (MD) and 95 %
confidence intervals were used to evaluate the effect of
each mechanical ventilation strategy on pulmonary com-
pliance and the PaO,/FiO, ratio of ICU patients without
ARDS or ALI [18]. A difference was considered statisti-
cally significant when the range of the 95 % confidence
intervals did not include zero.

Model selection was based on the Dias guidelines [19]
for evaluating linear models. Dbar denotes the posterior
mean of the residual deviance; pD denotes the effective
number of parameters (leverage); and DIC denotes the
deviance information criterion. A smaller Dbar value in-
dicates a better model fit. However, the model with the
lowest DIC is generally chosen to aid the interpretation
by accounting for model complexity. A lower DIC value

Table 1 Six ventilation strategies for intensive care unit patients
without ALI or ARDS

Strategy

Lower tidal volume and lower PEEP (lower VT + lower PEEP)
Higher tidal volume and lower PEEP (higher VT + lower PEEP)
Lower tidal volume and higher PEEP (lower VT + higher PEEP)
Lower tidal volume (lower VT + ZEEP)

Higher tidal volume (higher VT+ ZEEP)

Higher tidal volume and higher PEEP (higher VT + higher PEEP)

Lower positive end-expiratory pressure (PEEP) <10 mmHg; higher PEEP
>10 mmHg; lower tidal volume (VT) <8 ml/kg; higher VT >8 ml/kg. ZEEP zero
end-expiratory pressure

m MmO N @ >
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indicates a better model fit. Differences between the
models of less than 3 to 5 were not considered signifi-
cant [20]. The models were run for 150,000 iterations,
and convergence was assessed using the Brooks-
Gelman-Rubin diagnostic approach [21]. We used a
technique referred to as “back-calculation” [22] to
evaluate the consistency of the findings of the net-
work meta-analysis based on direct versus indirect
evidence. During this process, three types of models
were estimated: unrelated study effects, unrelated
mean effects, and consistency.

The output of the summary function can be plotted
for a visual representation. We investigated the possibil-
ity of statistical heterogeneity and inconsistency between
the direct and indirect effect estimates by visually
inspecting the forest plots and the I statistic using the
Higgins—Thompson method (low heterogeneity 25 %,
moderate 50 %, and high 75 %) [23]. We also ranked the
different interventions in terms of their likelihood of
leading to the best results for each outcome [12]. In the
Markov chain Monte Carlo cycle, each ventilation strat-
egy was ranked based on the estimated effect size. These
probabilities summed to 1 for each treatment and each
rank. X% means that the strategy achieves x% effective-
ness. Thus, a higher percentage denotes a more effective
intervention, although this ranking refers to only the
considered possibilities rather than the actual effective-
ness of a given ventilation strategy [18].

Results

We identified 28,160 studies for review based on their
titles and abstracts (Fig. 1). After an initial screen, we
retrieved the full texts of 86 potentially eligible articles for
a detailed assessment. Ultimately, we excluded 75
irrelevant full-text articles (Additional file 1), and 11 ran-
domized controlled trials [4, 24—33] were included in the
network meta-analysis. These studies included 575 pa-
tients who received one of six ventilation modes (Table 1).
Unfortunately, ventilation strategies E (higher VT + ZEEP)
and F (higher VT + higher PEEP) were isolated from the
other ventilation strategies. Therefore, only the other four
ventilation strategies were compared. All of the included
studies were randomized controlled trials (Table 2).

Heterogeneity

In this network meta-analysis, six studies reported data
on the PaO,/FIO, ratio and were included in the meta-
analysis. These studies were two-arm trials. The com-
parison between these studies showed no heterogeneity
(Additional file 2A). Among all of the included studies,
pulmonary compliance was reported in three articles.
These studies were two-arm trials, and the comparison
between these studies did not show any heterogeneity
(Additional file 2B).
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Flow diagram of the literature search

7545 PUBMED

5792 COCHRANE LIBRARY
7125 EMBASE

6466 CINAL

1232 WEB OF KNOWLEDGE

28074 articles been excluded for irrelevant which
contain:
o review and meta-analysis
e basic research
e animal experiments
o others

86 full papers or conferences proceeding reviewed

75 Excluded
participants not relevant
outcome not relevant
others

11 included in meta-analysis

Fig. 1 Flow diagram of the literature search

Pa0O,/FIO, ratio

Six articles reported the PaO,/FIO, ratio [24-27, 32,
33]. We chose a fixed-effects model (Additional file 3A)
to evaluate the MDs in the overall effect sizes between
the four compared ventilation strategies (Fig. 2).
The PaO2/FIO2 ratios, MD values and 95 % confidence
intervals of various ventilation strategies are shown in
Additional file 4A.

pt?>For probability ranking: in the rankings of the
compared ventilation strategies in terms of the PaO,/
FIO, ratio (Additional file 5A), we found that strategy C
(lower VT + higher PEEP) had the greatest potential to
improve the PaO,/FIO, ratio; the probability of strategy
C holding the top ranking was 98.8 %. Strategy D (lower
VT + ZEEP) was estimated to be the worst strategy in
terms of the PaO,/FIO, ratio.

For direct and indirect comparison: compared to strat-
egies B (higher VT +lower PEEP), A (lower VT + lower
PEEP), and D (lower VT + ZEEP), strategy C (lower VT +
higher PEEP) had the greatest potential to improve the
PaO,/FI0, ratio; the respective MDs (95 % confidence in-
tervals) were -46.2 (-78.6, —13.7), —60.9 (-98.6, —-23.1),
and -121 (-221, -20.6) (Fig. 3).

Pulmonary compliance

Three articles [25-27] reported on pulmonary compli-
ance and examined four ventilation strategies (Fig. 4).
We chose a fixed-effects model (Additional file 3B) to
evaluate the MDs in the overall effect sizes. MD values
and 95% confidence intervals of various ventilation strat-
egies are shown in Additional file 4B.

For probability ranking: we summarized the rankings
of the compared ventilation strategies in terms of
pulmonary compliance (Additional file 5B). Ventilation
strategy B (higher VT +lower PEEP) had the greatest
potential to improve pulmonary compliance; the prob-
ability of strategy B holding the top ranking was 57.2 %,
followed by strategy C (lower VT + higher PEEP) at
427 %. Strategy D (lower VT + ZEEP) was estimated to
be the worst strategy in terms of pulmonary compliance.

For direct and indirect comparison: compared to
ventilation strategy D (lower VT+ ZEEP), strategies A
(lower VT +lower PEEP), B (higher VT +lower PEEP),
and C (lower VT + higher PEEP) were associated with an
improvement in lung compliance; the respective MDs
(95 % confidence intervals) were 24 (13, 25), 34 (16, 52),
and 32 (20, 45) (Fig. 5).



Table 2 Characteristics of intensive care unit patients without acute lung injury or acute respiratory distress syndrom included in randomized controlled trials

Study Country Research period  Ventilation Patients (n) Cause Study quality Results
strategies Ja;;zsdsr?;rlg, Pa02/FIO2 Lung compliance Deaths (n) Length of ICU Length of
(ml/cmH20) stay (days) hospital
stay (days)
Lee PC [24] 1990 USA 10/1987-02/1988 A (lower VT + lower 103 Multiple trauma 5 294 + 86/ NR NR NR
PEEP) vs B (higher or celiotomy 260+ 78 46+ 1/
VT + lower PEEP) 27+05
Borges DL [25] 2013 Brazil 01/2011-03/2012 A (lower VT + lower 89 CABG surgery 6 270+ 90/ 474+125/ NR NR NR
PEEP) vs C (lower 32825+ 558+ 19.1
VT + higher PEEP) 84.75
Dyhr T [26] 2002 Denmark NR A (lower VT + lower 15 CABG surgery 7 379.5+90/ 58+ 11/ NR NR NR
PEEP) vs D (lower 3045+975 34+10
VT + ZEEP)
Chaney MA [27] 2000  America NR B (higher VT + lower 25 CABG surgery 5 3686+936/ 58+114/ NR NR NR
PEEP) vs A (lower 395.1+£1796 482+23
VT + lower PEEP)
Wrigge H [28] 2005 Germany NR B (higher VT + lower 44 CABG surgery 6 NR NR NR 1.2£05/ NR
PEEP) vs C (lower 21+05
VT + higher
PEEP)
Koutsoukou A [29] 2006 Greece 2005 D (lower VT+ ZEEP) 21 Severe brain 6 NR NR NR NR NR
vs A (lower VT + damage
lower PEEP)
Good JT Jr [30] 1979 America NR B (higher VT + lower 24 Open heart 7 NR NR NR NR NR
PEEP) vs E (higher surgery
VT + ZEEP)
Marvel SL [31] 1986 America 1983 E (higher VT + ZEEP) vs = 44 CABG surgery 7 NR NR NR NR 89+04/
B (higher VT + lower 88+05
PEEP)
vs F (higher VT + higher
PEEP)
Zupancich E [32] 2005  ltaly NR B (higher VT + lower 40 CABG surgery 6 324+120/ NR NR NR NR
PEEP) vs C (lower VT + 344 + 94
higher PEEP)
Pinheiro deOliveira R Brazil NR B (higher VT + lower 20 Surgery and 6 33425+823/ NR 4/3 6.5+5/ NR
[33] 2010 PEEP) vs A (lower VT + trauma 2995+719 77+76
lower PEEP)
Determann RM [4] 2010 Netherlands 01/2005-12/2007 E (higher VT + ZEEP) 150 Neurosurgery/ 7 NR NR 23/24 NR NR
vs D (lower VT+ ZEEP) neurology,
cardiothoracic
surgery,

and cardiology

The ventilation strategies are described in “Table 1”. Pa02/FIO2 partial pressure of arterial oxygen/fraction of inspired oxygen, PEEP positive end-expiratory pressure, VT tidal volume, ZEEP zero end-expiratory pressure,
NR no result reported, CABG coronary artery bypass graft

97T:0T (910T) 24pD [P/ *|D 12 OND

L1 jo G abed
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lower VT + lower PEEP (130)

lower VT + higher PEEP (65)

positive end-expiratory pressure, VT tidal volume

Fig. 2 Network of the comparisons of the partial pressure of arterial oxygen/fraction of inspired oxygen ratio in the Bayesian network
meta-analysis. The size of a given node is proportional to the number of patients (in parentheses) randomized to receive the treatment.
The width of each line is proportional to the number of trials (specified next to the line) comparing the connected treatments. PEEP

higher VT + lower PEEP (89)

lower VT (8)

Length of ICU stay

Three articles reported on the secondary outcome of the
length of ICU stay [24, 28, 33], and these studies exam-
ined three ventilation strategies (Fig. 6). We chose a
fixed-effects model (Additional file 3C) to evaluate the
MDs in the overall effect sizes. MD values and 95% confi-
denceintervals of various ventilation strategies are shown in
Additional file 4B.

For probability ranking: strategy A (lower VT + lower
PEEP) was associated with a shorter length of ICU stay;
and the probability of strategy A holding the top ranking
was 98.7 %. Strategy B (higher VT +lower PEEP) was

estimated to be the worst strategy in terms of the length
of ICU stay (Additional file 5C).

For direct and indirect comparison: compared to ven-
tilation strategies B (higher VT +lower PEEP) and C
(lower VT + higher PEEP), strategy A (lower VT + lower
PEEP) was associated with a shorter length of ICU stay,
and the respective MDs (95 % confidence intervals) were
-1.9 (-2.2, -1.6) and -1 (-1.87, —-0.124) (Fig. 7).

Other outcomes
Only one study [31] reported on the length of hospital
stay, and two studies [4, 33] reported on the number of

Comparison

lower VT vs lower VT + higher PEEP

lower VT + lower PEEP vs lower VT + higher PEEP

higher VT + lower PEEP vs lower VT + higher PEEP —e—

Mean Difference (95% Crl)
—o— | *-46.2 (-78.6, -13.7)
*-60.9 (-98.6, -23.1)

*-121 (-221, -20.6)

[
300

Fig. 3 Mean difference in the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO.,/FIO,) ratio relative to the PaO,/FIO; ratio of
ventilation strategy C based on Bayesian network meta-analysis. Crl credible interval for Bayesian network meta-analysis. The mean difference
(MD) was estimated from a Bayesian random-effects model of PaO,/FIO, ratios in the network. The range of 95 % confidence intervals
does not contain zero. MD <0 favors strategy C. PEEP positive end-expiratory pressure, VT tidal volume

0
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lower VT + lower PEEP (64)

higher VT + lower PEEP (12)

lower VT + higher PEEP (45)

Fig. 4 Network of the comparisons of pulmonary compliance in the Bayesian network meta-analysis. The size of a given node is proportional to
the number of patients (in parentheses) randomized to receive the treatment. The width of each line is proportional to the number of
trials (specified next to the line) comparing the connected treatments. PEEP positive end-expiratory pressure, VT tidal volume

L

lower VT (8)

deaths. Unfortunately, certain ventilation strategies were
isolated from the remaining ventilation strategies in
these studies; therefore, the aforementioned outcomes
could not be examined via network meta-analysis.

Discussion

Serpa Neto et al. [8] published a traditional pairwise
meta-analysis on ventilation strategies for patients with-
out ALI or ARDS in 2012; this meta-analysis applied no
restrictions on the setting (ICU or operating room).
However, considering the effect of the surgical proced-
ure, ventilation during an operation and ventilation in
the ICU are different, and this difference could lead to
heterogeneous results. Therefore, we included only

randomized controlled trials of ICU patients without
ALI or ARDS. This approach renders this meta-analysis
more purposeful and scientific.

However, network meta-analysis has several shortcom-
ings. It is difficult to understand its methodological aspects.
This method is not perfect and poses various challenges;
for instance, we should carefully assess both conceptual
and statistical heterogeneity as well as incoherence
between included studies [34]. Furthermore, the results of
a network meta-analysis are presented in two ways: prob-
ability ranking and the results of combined direct and
indirect comparisons. The estimates of treatment effects
should be interpreted with caution due to their uncertainty
because treatment rankings or probabilities can be

Comparison

lower VT + lower PEEP vs lower VT

higher VT + lower PEEP vs lower VT

lower VT + higher PEEP vs lower VT

Mean Difference (95% Crl)

— %24 (13, 35)
——— 34 (16, 52)
— e 32 (20, 45)

0

VT tidal volume

Fig. 5 Mean deviance in pulmonary compliance relative to strategy D based on Bayesian network meta-analysis. Cr/ credible interval for Bayesian
network meta-analysis. The mean difference (MD) was estimated from a Bayesian random-effects model of the pulmonary compliances in the
network. ‘The range of 95 % confidence intervals does not contain zero. MD >0 favors strategies A, B and C. PEEP positive end-expiratory pressure,

|
60
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higher VT + lower PEEP (79)

lower VT + lower PEEP (66)

Fig. 6 Network of the comparisons of the length of ICU stay in the Bayesian network meta-analysis. The size of a given node is proportional to
the number of patients (in parentheses) randomized to receive the treatment. The width of each line is proportional to the number of
trials (specified next to the line) comparing the connected treatments. PEEP positive end-expiratory pressure, VT tidal volume

lower VT + higher PEEP (22)

misleading [34], whereas a combined analysis of direct and
indirect evidence produces more meaningful results based
on published studies.

In this study, the PaO,/FIO, ratio was the primary out-
come. Probability ranking showed that ventilation strategy
C (lower VT +higher PEEP) was associated with the
greatest increase in oxygenation; in contrast, ventilation
strategy D (lower VT+ ZEEP) ranked last and was associ-
ated with the lowest PaO,/FIO, ratio among all of the
ventilation strategies examined. Moreover, based on direct
and indirect comparisons, compared to strategies A (lower
VT +lower PEEP), B (higher VT +lower PEEP), and D
(lower VT + ZEEP), ventilation strategy C (lower VT +
higher PEEP) was the most effective ventilation strategy in

terms of the PaO,/FiO, ratio, and these differences in ef-
fectiveness were statistically significant.
Ventilator-associated lung injury is a common clinical
complication in critically ill patients receiving mechan-
ical ventilation [35]. An increased tidal volume can over-
stretch the alveoli; this process is termed volutrauma,
and overstretching is the main reason for ventilator-
associated lung injury [35, 36]. Although lower tidal vol-
umes can cause distal alveolar collapse and inadequate
ventilation, high PEEP can significantly compensate for
this shortcoming by stimulating recruitment of collapsed
alveoli to alleviate focal atelectasis, increase alveolar
ventilation, and reduce the alveolar-arterial oxygen
difference, thereby effectively relieving the occurrence of

Comparison

higher VT + lower PEEP vs lower VT + lower PEEP —&—

lower VT + higher PEEP vs lower VT + lower PEEP

Mean Difference (95% Crl)

#-1.9 (-2.2, -1.6)

o | %-1(-1.87,-0.124)

[
-3

Fig. 7 Mean difference in the length of ICU stay relative to strategy A based on Bayesian network meta-analysis. C/ credible interval for Bayesian
network meta-analysis. The mean difference (MD) was estimated from a Bayesian random-effects model of the lengths of ICU stay in the network.
“The range of 95 % confidence intervals does not contain zero. MD <0 favors strategy A. PEEP positive end-expiratory pressure, VT tidal volume

0
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pulmonary shunting and ensure the delivery of arterial
oxygen [37, 38]. Simultaneously, a reduced tidal volume
can reduce ventilator-associated lung injury [37-39].
These phenomena could explain how ventilation strategy
C (lower VT + higher PEEP) increased the PaO,/FiO,
ratio and restored oxygen saturation.

Pulmonary compliance was a secondary outcome in
our study. Probability ranking indicated that ventilation
strategy B (higher VT + lower PEEP) was associated with
the highest pulmonary compliance but that ventilation
strategy D (lower VT+ ZEEP) was associated with the
lowest pulmonary compliance. Moreover, based on dir-
ect and indirect comparisons, we found that compared
to strategies A (lower VT + lower PEEP), B (higher VT
+ lower PEEP), and C (lower VT + higher PEEP), strategy
D (lower VT + ZEEP) was significantly associated with
the lowest lung compliance.

The finding that ventilation strategy B (higher VT +
lower PEEP) was associated with the highest pulmonary
compliance could be related to the following reasons: (1)
a high tidal volume during mechanical ventilation can
expand small airways, fully open alveoli, and reduce
intraoperative focal atelectasis, and PEEP can further
increase the stability of opened alveoli and enhance
pulmonary compliance [40]; (2) PEEP can hold alveoli
open at the end of exhalation, significantly increase
functional residual capacity, enable the alveoli to begin
to expand at a high functional residual capacity, avoid
excessive expansion and contraction of the lungs dur-
ing inhalation and exhalation, and reduce the destruc-
tion of lung tissue and its interstitial structure, and
damage to the alveoli. Consequently, PEEP maintains
the elastic recoil of the lung and enhances lung com-
pliance [38, 40, 41].

Ventilation strategy D (lower VT + ZEEP) was associ-
ated with the lowest pulmonary compliance and the smal-
lest increase in oxygenation. The mechanism underlying
this association could be that a lower tidal volume during
mechanical ventilation causes the distal alveolar and
small airways to close, resulting in alveolar collapse, in-
sufficient ventilation, increased intrapulmonary shunt-
ing, and a decreased PaO,/FIO, ratio. This mechanism
is supported by the findings of HU et al. [42]. Heden-
stierna et al. [43] also found that atelectasis and airway
closure can explain 75 % of the deterioration in PaO,
during mechanical ventilation. Under conditions of
alveolar collapse and reduced functional residual cap-
acity resulting from a low tidal volume, lung compli-
ance cannot be enhanced effectively. This result is
consistent with the results presented by Bruno Enek-
vist: low pulmonary compliance may be correlated with
an increased number of collapsed alveoli [44, 45].

There were three reports on the duration of ICU stay in
our network meta-analysis, and those reports examined
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ventilation strategies A (lower VT +lower PEEP), B
(higher VT +lower PEEP) and C (lower VT + higher
PEEP). Compared to strategies B (higher VT +lower
PEEP) and C (lower VT + higher PEEP), strategy A (lower
VT +lower PEEP) was significantly associated with a
shorter duration of ICU stay. One reason for this benefit
of strategy A is that lower tidal volume combined with
lower PEEP can leave areas of alveolar collapse unaltered,
avoiding cyclic recruitment/de-recruitment of distal lung
units, while avoiding hyperinflation in normal lung
regions, thus reducing end-inspiratory stress and lung
inflammation and consequently minimizing ventilator-
induced lung injury [46—48]. In addition, the use of a low
tidal volume together with lower PEEP (5 cm H,0) in
animal models can result in improved oxygenation [49].
This finding is consistent with the results that were de-
scribed by Karsten et al. [50], who stated that lower PEEP
combined with low VT prevents deoxygenation when
there is pneumoperitoneum and leads to a lower atelec-
tasis score based on computed tomography up to 2 hours
postoperatively.

This study had several limitations. The initial aim of
this article was focused on the development of lung in-
jury, overall survival, the incidence of pulmonary infec-
tion and atelectasis, the length of ICU and hospital stay,
time to extubation, the PaO,/FIO, ratio, and pulmonary
compliance; however, because of the small number of re-
search articles that we included, there were no uniform
outcome measures in our study. Aside from PaO,/FIO,
ratio and pulmonary compliance, we extracted only one
article on hospital length of stay and only two articles on
overall survival. Moreover, the original results were in-
complete, which indicates that this meta-analysis could
only produce relatively simple results rather than
comprehensive and diverse results. We hope that there
will be additional clinical research focused on the devel-
opment of lung injury in the future.

Conclusion

The results of this meta-analysis showed that for ICU
patients without ALI or ARDS, strategy C (lower VT +
higher PEEP) was associated with the highest PaO,/FiO,
ratio; strategy B (higher VT + lower PEEP) was superior
to the other strategies in improving pulmonary compli-
ance; strategy A (lower VT + lower PEEP) was associated
with a shorter length of ICU stay; and strategy D (lower
VT + ZEEP) was associated with the lowest PaO,/FiO,
ratio and pulmonary compliance.

Key messages
o Strategy C (lower VT + higher PEEP) was associated

with the highest PaO,/FiO, ratio in ICU patients
without ALI or ARDS
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e Strategy B (higher VT + lower PEEP) was superior
to the other strategies in improving pulmonary
compliance in ICU patients without ALI or ARDS

e Strategy D (lower VT + ZEEP) was associated with
the lowest PaO,/FiO, ratio and pulmonary
compliance in ICU patients without ALI or ARDS
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