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How ARDS should be treated
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Abstract

The Berlin definition criteria applied at positive
end-expiratory pressure (PEEP) 5 cm H,O reasonably
predict lung edema and recruitabilty. To maintain
viable gas exchange, the mechanical ventilation
becomes progressively more risky going from mild
to severe acute respiratory distress syndrome
(ARDS). Tidal volume, driving pressure, flow, and
respiratory rate have been identified as causes of
ventilation-induced lung injury. Taken together, they
represent the mechanical power applied to the
lung parenchyma. In an inhomogeneous lung,
stress risers locally increase the applied mechanical
power. Increasing lung homogeneity by PEEP and
prone position decreases the harm of mechanical
ventilation, particularly in severe ARDS.

Various etiologies can induce an inflammatory process
in the lung parenchyma. In some patients, the inflamma-
tion spreads throughout the entire lung, leading to the
diffuse edema that defines the acute respiratory distress
syndrome (ARDS) [1]. The dependent lung regions tend
to collapse under the increased lung weight [2], and only
non-dependent lung regions remain open for ventilation.
Gasless regions and reduced lung size are the anatomical
basis of the two main symptoms of ARDS: oxygen
refractory—fraction of inspired oxygen (FiO,)-resis-
tant—hypoxemia [3] and decreased lung compliance [4].

As a result, several measures must be undertaken sim-
ultaneously. Treatment aimed at correcting the etiology
depends strictly on the underlying disease causing the
ARDS. Several less specific treatments that target the
pathogenesis, such as steroids [5], statins [6], and a var-
iety of anti-mediators, have been proposed and tested
for their ability to contain or prevent the spread of the
inflammatory process. Unfortunately, none of them has
shown a clear-cut positive effect on outcome. On the
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other hand, the symptomatic treatment of gas exchange
is totally unspecific and independent of the cause of
ARDS because its goal (that is, maintaining appropriate
blood gas tensions) and its risks hinge on the same
factor: the edema and its extent.

Accordingly, there are two first steps that must be
undertaken in patients with ARDS: diagnosis, from
which we derive the specific treatment, and determin-
ation of ARDS severity [7, 8]. To assess the severity, we
must, ideally, quantify the edema by computed tomog-
raphy scan [9] or other imaging techniques [10] or by
determining the amount of extravascular lung water
[11]. In practice, the Berlin [7] classification assessed at
5 cm H,O of positive end-expiratory pressure (PEEP) is
a reasonable estimate of the extent of edema and of lung
recruitability, which increases from mild to severe ARDS
[12]. We strongly recommend this approach, as it allows
one to choose the most rational, and consequently less
hazardous, respiratory support regimen in any given
patient.

Mechanical ventilation does not cure ARDS but simply
buys time by maintaining a gas exchange sufficient for
survival. This benefit is provided by taking over the
function of the respiratory muscles. In patients with
ARDS, the respiratory muscles are unable, for several
reasons, to provide sufficient power to move gas in and
out of the lungs. The effects of mechanical ventilation
on oxygenation are twofold: they allow the precise titra-
tion of FiO, in the delivered gas, and they provide suffi-
cient pressure during the inspiratory phase to open
some of the collapsed pulmonary units, thus allowing
blood passing through these regions during inspiration
to be oxygenated. But these units will collapse again dur-
ing the expiratory phase if the PEEP is not sufficient
[13-15]. Consequently, the effects of tidal ventilation
alone on oxygenation are limited unless applied together
with an appropriate PEEP level. Ventilation, on the other
hand, is essential for carbon dioxide (CO,) elimination.
In ARDS, the increased respiratory drive [16, 17] and
the increased pulmonary dead space [18] increase the
necessary minute ventilation to a level that is far greater
than normal even if some degree of hypercapnia were to
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be accepted [19]. Indeed, ventilation of the “baby lung”
implies the use of stress (driving pressure) and strain
(tidal volume) [20] that is excessive for the dimen-
sions of the residual ventilated lung. This problem
obviously increases with the severity of ARDS. There-
fore, although the risk factors associated with improv-
ing oxygenation are the use of high FiO, and the
opening and closing of lung units during the respira-
tory cycle [21, 22], the greatest risks of mechanical
ventilation are associated with the necessity of elimin-
ating CO,. In fact, depending on the severity of
ARDS, the mechanical stress imposed on the “baby
lung” may be such as to alter the extracellular matrix
and thereby trigger further inflammation [23].

The damage associated with mechanical ventilation
has been collectively labeled ventilator-induced lung
injury, although the more realistic designation would be
ventilation-induced lung injury (VILI), since it may
occur even during spontaneous breathing [24]. VILI has
been variously attributed to excessive tidal volumes [25],
driving pressures [26], respiratory rates [27], and gas
flows [28]. We believe that a unifying hypothesis should
consider VILI to be the result of excessive mechanical
power (that is, energy per unit time) applied to the lung
tissue [29, 30], where “excessive” is relative to the “baby
lung” dimensions. In addition, as pointed out by Mead
et al. [31], if the mechanical power is distributed in an
inhomogeneous lung, the tidal energy can be multiplied
locally by the presence of stress risers [32, 33].

Accordingly, we believe that respiratory treatment
should consist in minimizing, as much as possible, the
applied mechanical power [29, 30] and the inhomogen-
eity of the lung [31, 32]. The mechanical power in this
case is primarily the product of tidal volume, driving
pressure [26], and respiratory rate [27, 33, 34]. One
should note that PEEP itself does not produce any tidal
energy load, as the delta volume is zero, except when
first introduced [35]. Therefore, whatever maneuver re-
duces the applied mechanical power (such as reducing
tidal volume), driving pressure or respiratory rate will re-
duce the probability of VILI. The disappointing results
of high-frequency oscillation studies [36, 37] can be
considered under the aspect of power: even small tidal
excursions, multiplied by the driving pressure and by the
hundreds of cycles per minute, may generate an intoler-
able mechanical load. For a given mechanical load, the
risk of VILI decreases if the lung is made more
homogeneous, thereby reducing the presence of stress
risers [31, 32]. Two measures may increase lung
homogeneity: an appropriate level of PEEP and prone
positioning [38]. PEEP increases the homogeneity by
preventing intertidal collapse [21, 22] and keeping the
recruited pulmonary units open [14, 15]. The prone
position increases lung homogeneity by counteracting
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the gravitational forces with a more favorable match-
ing of lung to chest wall shape [38]. Both prone pos-
ition and PEEP, however, produce their benefit only
in patients with intermediate—severe and severe ARDS
[39], in whom the high degree of lung recruitability
[40] provides the anatomical basis for PEEP and the
prone position to be effective.

Conclusions

We do believe that the principles of ARDS treatment
should be based on the following: diagnosis and spe-
cific etiological treatment and the classification of
ARDS severity [7, 39] at a PEEP of 5 cm H,O [12].
In mild ARDS, mechanical ventilation does not cause
problems. With increasing severity, the mechanical
power applied to the lungs should be reduced as
much as possible [29, 30], and a higher PEEP and
prone position should be employed. In some patients,
safe mechanical ventilation may not be possible. The
identification of a reasonable power threshold for
VILI would be the ideal parameter for the rational in-
dication of extracorporeal lung support.
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