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Plasma levels of microRNA are altered with ®
the development of shock in human sepsis:
an observational study
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Abstract

Background: Endothelial dysfunction plays a critical role in the development of sepsis-related organ failure; however, the
mechanisms that govern its development are not fully understood. Endothelial progenitor cells (EPCs) reduce vascular
leak and organ failure in experimental sepsis while modulating plasma expression of microRNA (miRNA). MicroRNAs are
small, noncoding segments of RNA that regulate gene expression and are known to modulate endothelial cell function
and inflammatory signaling pathways. We hypothesized that miRNA may play an etiologic role in the endothelial
dysfunction of sepsis and that their extracellular expression levels would be altered in those with shock.

Methods: Thirteen miRNAs were identified by literature search and analysis of the contents of human EPC-derived
exosomes using real-time PCR. Plasma samples were obtained from patients within 24 hours of their admission to ICUs
with severe sepsis (n =62) and from healthy controls (n = 32) and real-time PCR was used to measure the expression of
the candidate miRNAs. The Wilcoxon rank sum test was used to compare expression levels of the 13 candidate miRNAs
in septic patients with (n =29) and without (n = 33) shock while logistic regression was used to determine the area
under the curve for associations between miRNA expression and shock. Bioinformatic analyses using miRNA databases
were performed to identify pathways and gene targets of differentially expressed miRNA with potential relevance to
sepsis-related shock.

Results: MiRNA-34a expression was significantly increased in the group who developed shock (p = 0.03) while miR-15a
and miR-27a expressions were significantly decreased in this group (p = 0.006 and 0.03, respectively). The combined
expression of these three miRNAs predicted shock with an area under the curve of 0.78 (95 % Cl 0.66-0.90). In silico
analyses predict that these three miRNAs regulate genes involved in endothelial cell cycle, apoptosis, VEGF signaling,
LPS-stimulated MAPK signaling, and nuclear factor kappa B signaling.

Conclusions: The plasma levels of miRNA are altered in patients with severe sepsis complicated by shock and may offer
prognostic value as well as insights into the mechanisms of endothelial dysfunction in sepsis.
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Background

Sepsis is a heterogeneous syndrome characterizing the
body’s response to serious infection. Although a stand-
ard clinical definition has been proposed [1], its clinical
course is highly variable with some patients experiencing
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a relatively benign illness and others progressing to
shock and multi-organ failure [2]. Endothelial dysfunc-
tion is a key hallmark of this progression as its resultant
vascular permeability leads to cardiovascular comprom-
ise as well as organ edema and failure. While several
critical functions of the endothelium have been identi-
fied in sepsis [3—6], the biological underpinnings govern-
ing the development of endothelial dysfunction in this
syndrome are incompletely understood and represent an
important area of study in order to characterize the
pathogenesis of septic shock.
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MicroRNAs (miRNAs) are small (19-25 nucleotides)
noncoding segments of RNA that regulate gene expres-
sion by binding to target mRNA and inhibiting their
translation [7-9]. Cell-to-cell delivery of miRNAs through
vesicular structures such as exosomes has been described
in a variety of cell types including endothelial cells and has
been shown to impact cellular function [10-13]. Our pre-
vious work demonstrated that treatment of murine sepsis
with human endothelial progenitor cells (EPCs) improves
survival while attenuating vascular leak and its resultant
organ failure [14]. Endothelial progenitor cells release
exosomes that contain miRNAs known to promote the
homeostasis and barrier integrity of endothelial cells
[14-17] and may be a mechanism by which EPCs
modulate sepsis-induced vascular leak. Thus, a deeper
understanding of the role that endothelial-relevant
miRNAs may play in the pathogenesis of endothelial
dysfunction and shock is warranted.

In the current study, we have demonstrated that 13
miRNAs that have known associations with sepsis
[14, 18-31] are found inside EPC-derived exosomes.
Further, we have examined the expression levels of these
miRNAs in plasma collected from patients experiencing
severe sepsis and assessed for associations with the devel-
opment of shock and organ failure. We hypothesized that
patients who experience shock and organ failure will ex-
press higher levels of miRNAs that could reduce endothe-
lial barrier integrity through gene inhibition and,
conversely, express reduced levels of miRNAs that could
enhance endothelial barrier integrity.

Methods
Subject recruitment and sample acquisition
We screened all new intensive care unit (ICU) admis-
sions at a single tertiary-care academic hospital from
July 2013 to February 2015 for the presence of severe
sepsis based on the American College of Chest Physi-
cians/Society of Critical Care Medicine consensus defin-
ition [1]. Additional inclusion criteria included age >
18 years and admission into the ICU within the previous
24 hours. We excluded immunocompromised patients
as defined by: immunosuppressive medication use,
leukopenia, current hematologic malignancy, and history
of stem cell transplant, and excluded patients transferred
in from other hospitals if they had spent > 24 hours in
an ICU at the time of screening. Patients who had tran-
sitioned to comfort measures only at the time of screen-
ing were further excluded. Healthy control subjects were
recruited through local advertising. Informed consent
for study participation and publication of results was
obtained from all research subjects or their legally
authorized representatives.

Consenting subjects had blood drawn via venipuncture
or from pre-existing intravascular catheters. Blood samples
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from septic patients were collected within 24 hours of ad-
mission to the ICU. Samples were centrifuged at 3400 x g
for 10 minutes and the plasma supernatant was collected
and stored in aliquots at -80 degrees Celsius. Demographic
and clinical information from septic patients was ab-
stracted from the electronic medical record including the
source and type of infection as well as variables required to
calculate acute physiology and chronic health evaluation
(APACHE) II scores. Clinical outcomes including occur-
rence of shock (defined by vasopressor use), occurrence of
acute kidney injury [Acute Kidney Injury Network (AKIN)
criteria], occurrence of acute respiratory distress syndrome
(ARDS) by the Berlin definition [32], ICU and hospital
length of stay, discharge destination and vital status were
similarly captured. Basic demographics were recorded from
healthy controls.

Human EPC isolation, culture and exosome analysis

Human EPCs were isolated from umbilical cord blood as
previously described (Medina). Cells were cultured in
EGM-2 medium (Lonza, Walkersville, MD, USA) contain-
ing 10 % of exosome-depleted fetal bovine serum (System
Biosciences, Mountain View, CA, USA). Exosomes were
isolated from EPC-conditioned medium using ExoQuick
Exosome Precipitation Solution (System Biosciences) fol-
lowing the manufacturer’s instructions. MiRNAs were iso-
lated by miRNeasy kits (Qiagen, Valencia, CA, USA) and
analyzed by real-time polymerase chain reaction (RT-PCR).

Candidate miRNA selection

Using the combination of MeSH terms for “sepsis” and
“microRNA”, we searched MEDLINE for articles that
describe associations between the miRNA expression
and sepsis. Each article was reviewed and associated
miRNA were recorded and then searched individually in
conjunction with sepsis (e.g., “miR-146a” and “sepsis”) in
order to identify any additional references that associate
miRNA expression and sepsis. In order to focus the
investigation on miRNA with a high likelihood of
relevance, we considered only miRNAs with at least two
published references associated with sepsis to be poten-
tial candidates for investigation. These candidates were
then cross-referenced with miRNA expression data from
an array performed on human EPC-derived exosomes.
MiRNAs that were not measured or in very low
abundance in these exosomes were excluded, while the
remaining miRNAs comprised the list of candidate
miRNAs included in the analysis.

Real-time PCR

Plasma samples from septic and healthy control subjects
and EPC-derived exosome contents each underwent real-
time PCR analysis. Candidate miRNAs were isolated from
plasma and exosome samples using miRNeasy serum/
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plasma kits and then amplified with miScript SYBR Green
PCR kits and primers specific to each miRNA (Qiagen).
The mean Cq of the healthy control subjects was used to
normalize the Cqs for each miRNA. Delta Cqs were then
converted to and presented as fold change compared to
the healthy control mean expression values.

Bioinformatic analysis

Ingenuity Pathway Analysis (Qiagen) was used to examine
the canonical pathways in which differentially expressed
miRNAs in shock were involved. The software uses Fish-
er’s exact test to determine the statistical probability that a
given canonical pathway is modulated by the inputted
miRNA. Significant pathways are represented by the nega-
tive log of the p value; we a priori chose to only present
pathways with a p value<0.001 corresponding to a
negative log value of four. Subsequently, the miRNA tar-
get databases TargetScan [34] and MiRanda [35] were ana-
lyzed and both experimentally validated and predicted
gene targets involved in canonical pathways of relevance
were identified and used to manually construct a gene
network for the differentially expressed miRNA.

Statistical analysis

Baseline characteristics of human subjects were compared
between the healthy control, septic patients without
shock, and septic patients with shock groups using
analysis of variance (ANOVA) for continuous variables
and the chi-squared test for categorical variables. Continu-
ous clinical characteristics were compared between septic
patients who experienced shock and those who did not
using the Student’s ¢ test or Wilcoxon rank sum test as ap-
propriate while categorical variables were compared using
the chi-squared or Fisher exact test. MiRNA expression is
presented as a continuous fold change variable and com-
pared between the two sepsis groups using the Wilcoxon
rank sum test. Additionally, miRNA expression was com-
pared between groups defined by the presence or absence
of acute kidney injury and ARDS as well as between
groups defined by an APACHE II score of less than versus
greater than or equal to 25. Correlation between miRNA
levels and APACHE II scores was further assessed for
using Spearman’s correlation. Area under the curve
(AUC) was estimated for each miRNA based on univariate
logistic regression models comparing the subjects who ex-
perienced shock and those who did not. A multivariable
logistic regression was also developed to determine the
predictive performance of a combination of the candidate
miRNAs. The AUC for the most predictive single miRNA
was compared to the AUC from the multiple logistic re-
gression model using Delong’s test for comparing nested
AUC:s. Bootstrap confidence intervals based on 1000 boot-
strap samples were also estimated for all AUCs. All
analyses were conducted in SAS v. 9.3 (SAS Institute,
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Cary, NC, USA). All aspects of this study were approved
by the Institutional Review Board at the Medical
University of South Carolina.

Results

A total of 228 patients with a clinical picture suggestive
of severe sepsis were admitted to the medical or surgical
ICUs during the study enrollment period. Of these, 12
(5 %) were deemed by the study team and the clinical
team to not have sepsis after detailed review of the
clinical history. Of the remaining 216 patients, 121
(56 %) were excluded because consent was unobtainable
within the first 24 hours of presentation to an ICU.
Further, 27 (13 %) patients were excluded for having an
immunocompromised condition, and six (3 %) were
excluded because they were receiving comfort measures
only at the time of screening. The remaining 62 (29 %)
were enrolled and included in the analysis in addition to
32 healthy control volunteers. Healthy control subjects
were on average younger and more likely to be of white
race (Table 1). Among septic subjects, those who devel-
oped shock were similar in age and race to those who did
not but were more likely to be of male gender. The source
of infection was similar between those who experienced
shock and those who did not, as was the type of organism
responsible for the sepsis. Subjects who experienced shock
had no significant differences in their rates of mechanical
ventilation, ARDS, or acute kidney injury as well as ICU
or hospital lengths of stay; however, they did have a
nonsignificant trend toward higher APACHE II scores at
enrollment and a significantly higher mortality rate.

Expression of candidate miRNAs in human EPC exosomes
We identified 17 miRNAs with more than one published
reference associating them with sepsis. Of these, four
miRNAs were either not measured or expressed in very
low levels in an array of human EPC-derived exosomes
(data not shown) and were excluded from analysis while
the remaining 13 miRNA were analyzed (Table 2). The
expression levels of the candidate miRNA in human
EPC-derived exosomes was determined by RT-PCR and
displayed in Fig. 1. Expression levels are presented as
fold changes from RNUG6B expression as previously
described [36, 37].

Differential expression of miRNAs in shock

The expression levels of the candidate miRNAs were mea-
sured in the plasma from healthy controls as well as from
septic patients with and without shock using RT-PCR.
The mean expression level was calculated from the
healthy control group for each miRNA and used to
normalize the expression of that miRNA for each septic
subject such that data is presented as a fold change in
expression compared to the mean healthy control values.
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Table 1 Characteristics of study subjects

Variable Healthy controls No shock Shock p value
n=32 n=33 n=29

Mean age (years) + SD 40+ 16 56+ 18 58 +21 0.0002
Male gender (%) 15 (44) 15 (45) 22 (76) 0.03
White race (%) 28 (82) 19 (58) 16 (55) 001
Source of infection (%) N/A 0.6

Urinary tract 11 (33) 9 (31

Pneumonia 9 (27) 12 (41)

Intravascular device 5(15) 2(7)

Other 7 (21) 6 (21)
Organism (%) N/A 0.28

Gram-negative bacteria 12 (36) 11 (38)

Gram-positive bacteria 5(15) 3 (10)

Unknown 11 (33) 6 (21)

Other 4(12) 931
Mechanical ventilation (%) N/A 12 (36) 14 (48) 0.28
ARDS (%) N/A 5 (15 %) 9 (7 %) 022
Acute kidney injury (%) N/A 20 (61 %) 18 (62 %) 0.79
Mean APACHE Il score 5D N/A 205+74 235+83 0.09
Median ICU LOS in days (IQR) N/A 2(7) 4 (4) 0.16
Median hospital LOS in days (IQR) N/A 7(01) 7(12) 0.64
Death (%) N/A 3(9 931 0.03

SD standard deviation, N/A not applicable, ARDS acute respiratory distress syndrome, APACHE acute physiology and chronic health evaluation, ICU intensive care unit,
LOS length of stay, QR interquartile range

Table 2 Summary of candidate miRNA associated with sepsis

miRNA Findings
miR-15a Differentially expressed in adult and neonatal sepsis [18, 19]. Inhibits angiogenesis through direct targeting of VEGF and FGF [51]
miR-16 Differentially expressed in adult and neonatal sepsis [18, 19]. Regulates cell cycle entry, differentiation, and cytokine production in EPCs [52]
miR-34a Plasma expression altered in murine sepsis [14]. Promotes endothelial senescence through targeting of SIRT1 [53]
miR-126 Plasma expression altered in murine sepsis [14]. Regulates the response of endothelial cells to VEGF through targeting of SPRED1 [15]
miR-27a Upregulated in the lungs of septic mice [20, 21]. Knockdown reduced levels of TNF-a and IL-6 [21]
miR-150 Elevated in septic patients compared to patients with nonseptic SIRS [23]
Lower levels of miR-150 associated with sepsis mortality [22]
miR-223 Elevated in septic patients compared to controls
Expression level directly related to illness severity [25]
miR-181b Inhibits NF-kB-mediated expression of VCAM1 in endothelial cells and reduces leukocyte influx into vascular endothelium [26]
miR-155 Upregulated in mice in response to systemic lipopolysaccharide. Targets several proteins in LPS signaling pathway [27]
miR-125b Downregulated in mice in response to systemic lipopolysaccharide. Targets TNF-a [27]
miR-146a Regulates IL-1B, IL-6, and TNF-a expression through targeting of IRAK1 in the NF-kB signaling pathway [28]
miR-486 Targets and inhibits NF-kB repressors resulting in its sustained signaling [29]
miR-21 Upregulated in mice in response to cecal ligation and puncture. Shown to facilitate the generation of myeloid-derived suppressor cells

in late sepsis [30] Null miR-21 mice with higher mortality in LPS-peritonitis model [31]

miRNA microRNA, VEGF vascular endothelial growth factor, FGF fibroblast growth factor, EPC endothelial progenitor cells, TNF-a tumor necrosis factor alpha,
IL-6 interleukin-6, SIRS systemic inflammatory response syndrome, NF-kB nuclear factor kappa B, LPS lipopolysaccharide, IL-1f interleukin-1 beta



Goodwin et al. Critical Care (2015) 19:440

miR-126
miR-21
miR-16
miR-27a
miR-125b
miR-181b
miR-486
miR-150
miR-223
RUN6B
miR-15a
miR-34a
miR-155
miR-146a

0.0 05 1.0

B

—r

10203040 200 400

Fold Change

Fig. 1 Expression of candidate miRNAs in human EPC-derived
exosomes. Data normalized to the expression of RUN6B. EPC endothelial
progenitor cells, miRNA microRNA

Expression levels were compared between healthy con-
trols (n=32) and the entire sepsis population (n=62) as
well as between septic subjects with (n=29) and without
shock (n =33). Sepsis patients demonstrated significantly
higher plasma expression of each miRNA (all p<0.05,
data not shown) except miR-150 (p =0.14) and miR-486
(p=0.58) when compared to healthy controls. MiR-15a
and -27a were significantly underexpressed in septic sub-
jects who experienced shock compared to those who did
not (p=0.0062 and p =0.03, respectively) while miR-34a
was overexpressed (p =0.03) in the shock group (Fig. 2).
Patients in shock also exhibited nonsignificant trends
toward reduced expressions of miR-21 and miR-126
compared to the subjects who did not experience shock
(p=0.9 and p =0.1, respectively). There were no signifi-
cant differences in the expression of any other miRNAs
between the two sepsis groups.

In a separate analysis, miRNA levels were compared
between septic subjects whose clinical course was com-
plicated by acute kidney injury or ARDS and between
subjects with high (>25) or low (< 25) APACHE II
scores. In total, 38 of 62 (61 %) subjects experienced
acute kidney injury (defined as AKIN stage I or higher).
Of these 38, only 18 (47 %) subjects had experienced
vasopressor-dependent shock, demonstrating only mod-
est overlap between the groups defined by the presence
of shock and the presence of acute kidney injury. How-
ever, similar to the subjects who experienced shock,
those who experienced acute kidney injury exhibited
significantly lower levels of plasma miR-15a compared
to those who experienced no acute kidney injury (p <
0.0001, data not shown). There were no significant dif-
ferences in the expression levels of other miRNAs based
on the presence or absence of acute kidney injury.
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Additionally, there were no associations or correlations
between miRNA levels and presence of ARDS or
APACHE 1I scores.

The combination of differentially expressed miRNA predicts
the development of shock

Logistic regression was used to determine associations
between miRNA expression and shock. The area under
the curve (AUC) values for individual miRNAs ranged
between 0.66 and 0.70 (Table 3). MiR-15a was the most
predictive single miRNA for distinguishing between sep-
sis patients with and without shock with an AUC of 0.70
[95 % confidence interval (CI) 0.57-0.84]. The final mul-
tiple marker model included miR-15a, -27a, and -34a.
The receiver operating characteristics curves for miR-
15a and for the multiple marker model are shown in
Fig. 3. Although the AUC for the multiple marker model
was larger than any individual marker [AUC=0.78
(95 % CI 0.66—0.90)], there was not a significant differ-
ence in the AUC between it and miR15a (p = 0.090).

In silico analyses of the differentially expressed miRNA
MiRNA-15a, -27a, and -34a were input into Ingenuity
Pathway Analysis in order to predict the canonical
pathways that may be differentially regulated in septic
subjects who experienced shock. Twenty different path-
ways met the predetermined significance level of a nega-
tive log of the p value>4 (Fig. 4). Of these 20, four
pathways appeared to be particularly relevant to the
endothelial response to sepsis including LPS-stimulated
MAP kinase signaling, cell cycle: G1/S checkpoint,
vascular endothelial growth factor (VEGF) signaling, and
myc-mediated apoptosis signaling.

Review of the TargetScan and miRanda databases
identified 20 total genes that have been experimentally
validated (solid lines) to be targets of miR-15a, -27a, or
-34a and are also associated with pathways of potential
relevance in sepsis (Fig. 5). These pathways include
those identified in the canonical pathway analysis (cell
cycle regulation, apoptosis, and LPS-stimulated MAP
kinase signaling) as well as the nuclear factor kappa B
(NF-kB) signaling pathway and a broader pathway of
endothelial barrier integrity that includes VEGF signal-
ing. Additional genes that are predicted targets of these
miRNA and are included in these pathways are also
displayed (dashed lines).

Discussion

The results of this study demonstrate that the expression
of candidate miRNAs with known associations with sepsis
is altered in patients with septic shock. These data demon-
strate that miR-15a, -34a, and -27a were all differentially
expressed in patients whose course was complicated by
shock and their combination was able to discriminate
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Fig. 2 Plasma expression levels of miRNAs associated with sepsis in healthy controls (n =32) and septic patients with (n =29) and without shock

(n=33). Data presented as a fold change compared to the median value of the healthy control population for each miRNA. Box plots are displayed
where the horizontal bar represents the median, the box represents the IQR and the whiskers represent the maximum and minimum values. Comparisons
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which patients had or developed shock with reasonable
accuracy. In silico analyses predict that these three
miRNAs modulate several pathways important to endo-
thelial cell function including: cell cycle regulation, apop-
tosis, barrier integrity, lipopolysaccharide (LPS)-mediated
signaling, and NF-«B signaling. Inside of these pathways,
several gene targets have been identified that may repre-
sent key mediators in the development of endothelial
dysfunction and progression to shock.

Since the initial discovery of extracellular miRNA, inves-
tigators have postulated that they provide a mechanism
for cell-to-cell communication through manipulation of
target cell gene expression [10]. MiRNAs are known to
circulate in the plasma either enveloped in a vesicular
structure such as an exosome, microvesicle or apoptotic
body [10, 11, 38] or bound to protein such as argonaute 2
or high-density lipoprotein (HDL) [39, 40]. Endothelial
cells can communicate with each other or with other cell
types through the release of membrane-bound miRNAs,

Table 3 Area under the curve (AUC) (95 % confidence interval) for
individual miRNAs and for a multivariable logistic regression model

Marker AUC

miR-27a 0.66 (0.52, 0.80)
miR-34a 0.67 (0.53, 0.80)
miR-15a 0.70 (0.57, 0.84)
miR-15a + miR-27a + miR-34a 0.78 (0.66, 0.90)

miRNA microRNA

which are internalized by recipient cells leading to an al-
teration of gene expression [11, 12]. Thus, the expression
patterns of extracellular miRNAs that modulate endothe-
lial function and inflammatory signaling may provide key
insights into mechanisms that contribute to endothelial
activation and injury in the setting of severe sepsis.
Through the identification of differentially expressed miR-
NAs in patients who developed shock, these data provide

—— Multiple Marker Model (AUC =0.78)

~—— miR-15a (AUC = 0.70)

0.0 T 1
0.0 0.5 1.0

1 - Specificity

Fig. 3 Receiver operating characteristics curve for miR-15a (orange)
and for the multivariable logistic regression model including miR-153,
miR-27a, and miR-34a (green)
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new directions of exploration into both mechanistic dis- VEGFA, VEGFC and MYLK [41-44]. Therefore, reduced
covery and therapeutic intervention. levels of circulating miR-15a and miR-27a could disinhibit

Although the data presented here represent only associ-  these genes and contribute to the development of shock.
ations, there are several potential mechanisms by which  Alternatively, miR-34a targets and inhibits BCL2 and
the differential expression or miR-15a, -27a, and -34a  SIRT1, which have both been identified as important
could impact the development of endothelial dysfunction  negative regulators of apoptosis and cellular senescence in
and shock. First, both miR-15a and miR-27a are known to  the endothelium [45, 46]. Thus, increased levels of circu-
or are predicted to target and inhibit genes that increase lating miR-34a could be contributing to the endothelial
vascular permeability in the setting of sepsis including  dysfunction in shock by augmenting apoptosis and

. MIRNA O Cell Cycle Regulation
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|:| LPS-stimulated MAPK Signaling - Apoptosis Regulation
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Fig. 5 Gene target network of miR-15a, -27a, and -34a in pathways of relevance to endothelial dysfunction in sepsis. Arrows represent validated (solid)
or predicted (dashed) targets of a miRNA. miRNA microRNA
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senescence in response to cytokine stimuli. Finally,
miR-15a may target several members of the NF-«xB path-
way and reduced circulating miR-15a could functionally
augment NF-kB signaling leading to increased inflamma-
tory cytokine production and increased endothelial injury.

In addition to providing mechanistic insight into the
endothelial dysfunction of septic shock, the differential
expression of miR-15a, -27a, and -34a may also offer prog-
nostic biomarker capability. Unlike genomic DNA, which
is static, RNA expression can dynamically change over
healthy and diseased states and, thus, can provide real-
time information regarding cellular function. And, as pro-
tein repression is a downstream consequence of miRNA
function, changes in miRNA expression may precede
changes in protein expression. Accordingly, miRNAs that
are associated with the development of shock in patients
with sepsis may provide an early glimpse into an individ-
ual’s risk at the time of initial presentation. Thus, rapid,
automated analysis of plasma miRNAs could represent a
useful prognostic biomarker with which to risk stratify
patients with severe sepsis. Such a tool could be used to
identify those at greatest risk for impending hemodynamic
compromise potentially leading to more aggressive early
intervention or changes in triage practices.

This study has limitations. As stated above, our data
provide only associations between plasma miRNA levels
and shock; therefore, we cannot determine if the differen-
tial expression of these miRNAs contributes to the devel-
opment of shock or is a response to shock. In addition,
our decision to examine a larger array of candidate
miRNA limited our ability to confirm statistical signifi-
cance with multiple comparisons testing. Future work will
focus on validating the differential expression of miR-15a,
miR-27a, and miR-34a in independent cohorts. Although
all of the plasma samples from sepsis patients were col-
lected within the first 24 hours of admission, these data
are unable to determine the prognostic capabilities of
these miRNA if measured immediately at the time of
initial presentation. Future studies that examine miRNA
expression at that time point will help to clarify their
prognostic utility. Our data are further limited by our
inability to identify the cellular source of the analyzed
miRNA. A variety of cells exposed to plasma are known to
release membrane-bound miRNA including lymphocytes,
neutrophils, platelets, endothelial cells, and endothelial
progenitor cells [11, 13, 14, 47, 48] and individual miRNAs
are known to be released by numerous different cell types
[49]. Further, comparisons between the miRNA expres-
sion in cells and their daughter exosomes has revealed
markedly different miRNA expression patterns between
the two compartments suggesting a selective export
mechanism [10, 13, 50]. In combination, these characteris-
tics create a significant challenge to determining the exact
cellular source of circulating miRNA. Finally, this
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investigation is limited by the inability to study the down-
stream targets of the differentially expressed miRNAs in
vivo. The vast majority of the known or predicted targets
code for intracellular proteins, which would necessitate bi-
opsy of tissue in order to analyze their expression in the
endothelium in vivo. As patients admitted with severe sep-
sis uncommonly undergo tissue biopsy, this represents a
limitation to our analysis. A notable exception is VEGFA,
which is targeted by miR-15a and is secreted
extracellularly. When analyzed, no association could be
identified between VEGFA and miR-15a levels in subjects’
serum (data not shown). It is unclear from the current
sample size if this lack of association is accurate or repre-
sentative of type II error in setting of the statistical noise
inherent to in vivo analysis of the critically ill. Since this
also represents a single point in time in a disease with a
protracted course, a time course study of serum miR-15a
and VEGFA levels is warranted to definitively establish
whether an association between the two exists.

Conclusions

Altered plasma expression levels of miR-15a, -27a, and
-34a are associated with the development of shock in
patients with severe sepsis. These miRNA target cellular
pathways that are critical to endothelial homeostasis in-
cluding cell cycle regulation, apoptosis, cell layer perme-
ability, and inflammatory response signaling. Future work
will include earlier measurement of miRNA at the time of
presentation to determine their prognostic capabilities as
well as using in vitro and animal models of sepsis to clarify
the potential roles that these miRNA and their targets play
in the development of endothelial dysfunction and shock.

Key messages

e Endothelial dysfunction is an important hallmark of
the development of shock

e MicroRNA-15a, -27a, and -34a are differentially
expressed in the plasma of septic patients who
develop shock

e The expression of these microRNAs predict the
presence of shock with very good accuracy

o Insilico analyses predict that these microRNAs target
and inhibit a number of genes that regulate the cell
cycle, apoptosis, NF-«kB signaling, LPS-stimulated
MAP kinase signaling, and intercell permeability of
endothelial cells.
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