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Abstract

ratios for mortality for such false associations.

facilitate an evaluation of a study’s risk for confounding.

Introduction: In critical care observational studies, when clinicians administer different treatments to sicker patients,
any treatment comparisons will be confounded by differences in severity of illness between patients. We sought to
investigate the extent that observational studies assessing treatments are at risk of incorrectly concluding such
treatments are ineffective or even harmful due to inadequate risk adjustment.

Methods: We performed Monte Carlo simulations of observational studies evaluating the effect of a hypothetical
treatment on mortality in critically ill patients. We set the treatment to have either no association with mortality or
to have a truly beneficial effect, but more often administered to sicker patients. We varied the strength of the
treatment’s true effect, strength of confounding, study size, patient population, and accuracy of the severity of
illness risk-adjustment (area under the receiver operator characteristics curve, AUROC). We measured rates in which
studies made inaccurate conclusions about the treatment’s true effect due to confounding, and the measured odds

Results: Simulated observational studies employing adequate risk-adjustment were generally able to measure a
treatment’s true effect. As risk-adjustment worsened, rates of studies incorrectly concluding the treatment provided
no benefit or harm increased, especially when sample size was large (n =10,000). Even in scenarios of only low
confounding, studies using the lower accuracy risk-adjustors (AUROC < 0.66) falsely concluded that a beneficial
treatment was harmful. Measured odds ratios for mortality of 1.4 or higher were possible when the treatment's true
beneficial effect was an odds ratio for mortality of 0.6 or 0.8.

Conclusions: Large observational studies confounded by severity of illness have a high likelihood of obtaining
incorrect results even after employing conventionally “acceptable” levels of risk-adjustment, with large effect sizes
that may be construed as true associations. Reporting the AUROC of the risk-adjustment used in the analysis may

Introduction

Financial, ethical, and practical constraints prevent ran-
domized clinical trials (RCTs) from being conducted in
many cases to guide clinical decision-making. The op-
portunity for observational studies to fill in these evi-
dence gaps may be increasing, as routinely collected
patient data become more detailed [1] and National In-
stitutes of Health-sponsored clinical trial data are now
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publicly available for secondary use [2,3]. In the ICU in
particular, the volume of routinely collected patient data
available for analysis is staggering in size and scope [4,5].
As data collection and computation becomes cheaper,
the role of observational studies in clinical medicine is
unlikely to diminish [6].

Confounding is a particular threat in observational stud-
ies when comparison groups are different because of so-
called non-random allocation, because patients are given
therapies doctors think are best for them, rather than be-
cause of a coin flip [7,8]. For critically ill patients, these
treatment choices are frequently informed by a patient’s
severity of illness, and observational studies assessing the
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effect such treatments are at risk of obtaining incorrect
results due to confounding by indication. If a patient’s
indication to receive treatment is their higher severity of
illness compared to those who do not receive treatment, a
spurious treatment-outcome association may be measured
solely due to confounding by severity of illness. Adjusting
for severity of illness within statistical regression is pos-
sible [9], but whether such adjustment succeeds at remov-
ing these baseline differences between patient groups is
often not clear. To overcome confounding, sophisticated
severity of illness risk-adjustors with area under the re-
ceiver operator characteristic curve (AUROC, a common
measure of accuracy) as high as 0.8 to 0.9 have been devel-
oped for ICU patients [10-13]. Unfortunately, these same
scores often display AUROCs of 0.7 to 0.8 in external val-
idation, may be even lower in situations of particular clin-
ical interest [14,15], and are sometimes replaced by even
less accurate comorbidity adjustment scores such as the
Charlson and Elixhauser. Although imperfect risk adjust-
ment and residual confounding are universally acknowl-
edged in the limitations sections of observational studies,
there is often little effort to assess their likelihood or the
magnitude of such effects.

Because there are not widely implemented techniques
to assess whether observational studies are valid when
there is risk of confounding, the current study seeks to
clarify and provide guidance to address this problem.
We simulated a series of observational studies that repli-
cate the common scenario in the ICU, where one is
interested in determining whether a treatment has an in-
dependent effect on mortality, when it is also true that
more severely ill patients are more likely to receive the
treatment. We simulated studies in which a treatment
had no direct effect on mortality, and thus, was safe to
administer to critically ill patients, as well as scenarios in
which the treatment provided a truly beneficial effect on
mortality. We tested the hypothesis that over a range of
worsening risk adjusters, observational studies would be
increasingly likely to make an incorrect conclusion about
the treatment’s true effect, thus, making them unreliable
as evidence to inform clinical practice. We sought to de-
velop intuitions for assessing risk of obtaining such re-
sults under various scenarios in observational studies,
and to quantify the magnitude of apparent associations
that can be measured solely due to confounding.

Methods

We performed Monte Carlo simulations of observational
cohort studies where an investigator evaluates the inde-
pendent effect of a hypothetical treatment (for example,
drug, procedure, or sepsis bundle), when the treatment
was more often given to patients at higher risk of death
compared to patients not receiving the treatment. Dur-
ing each simulated study, we drew a random sample of
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patients from a hypothetical cohort of patients receiving
non-surgical mechanical ventilation. This hypothetical
population’s risk distribution was modeled after non-
surgical mechanical ventilation patients hospitalized at
US Department of Veterans Affairs hospitals [13]. In a
sensitivity analysis presented in the Appendix, we gener-
ated a hypothetical population designed to model situa-
tions where clinicians can estimate with good accuracy
which patients would live or die. This population had a
bimodal distribution of risk: most patients were assigned
a relatively low probability of death (clinicians felt they
would live) but a small proportion was assigned a high
probability (clinicians felt they would likely die). Because
literature suggests physicians can predict mortality with
AUROCs of approximately 0.85, by construction, this
risk distribution was modeled with a similar baseline
predictive ability [16].

Generation of the risk adjuster

We varied the accuracy of the risk adjuster available to
the investigator to adjust for differences between pa-
tients. We set patients’ baseline risk of death as their
true risk in each simulation, and created a risk adjuster
that could predict their risk of death with varying accur-
acy. We varied the risk adjuster accuracy by adding ran-
dom error to each patient’s baseline risk, and quantified
its accuracy by calculating the risk adjuster AUROC for
predicting death in the sample (these AUROCs repre-
sent in-sample accuracies, not external accuracies). The
AUROC was calculated by post-estimation after fitting a
logistic regression with the risk adjuster as the exposure
and death as the outcome.

Development of low and high confounding scenarios

We varied the degree of confounding across simulated
studies. Although treatment receipt was randomly assigned,
to introduce confounding we weighted the assignment
based on the patient’s baseline risk of death. By more
heavily weighting patients’ baseline risk, we could increase
the level of confounding. We developed two hypothetical
scenarios of interest to best approximate situations likely
to occur in clinical practice, a scenario where the admi-
nistration of the treatment was mildly confounded, and a
scenario of high confounding.

In low confounding scenarios, patients at the 10™ per-
centile of risk of death (15% chance of death) received
the treatment 30% of the time, while patients at the 90™
percentile of risk (75% chance of death) received the
treatment 60% of the time. Thus, compared to low-risk
patients, patients at the highest risk of death were ap-
proximately twice as likely to receive the treatment when
confounding was low.

In the high confounding scenarios, a low-risk patient
had a low chance of receiving the treatment, but the
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chance rose rapidly as risk increased. Patients at the 10™
percentile of risk received the treatment 15% of the time,
while patients at the 90™ percentile of risk received the
treatment 85% of the time. Thus, compared to low-risk
patients, patients at the highest risk of death were ap-
proximately five times as likely to receive the treatment
when confounding was high.

True treatment effect

We set the treatment’s true effect on mortality during
each simulation. Because observational studies often em-
ploy logistic regression to adjust for differences between
groups, we expressed the treatment’s true effect as an
odds ratio (OR). We created scenarios in which the
treatment had no effect on mortality (OR =1.0), as well
as scenarios where the treatment was truly beneficial
(OR=0.6 or 0.8). When the treatment was beneficial,
patients receiving the treatment had 0.6 or 0.8 times the
odds of death compared to prior to receiving the treat-
ment. To more easily conceptualize ORs, we calculated
the risk difference after treatment and graphically illus-
trated the shift in the distribution of risk before and after
treatment.

Simulation analysis

We varied four parameters during simulations: the num-
ber of patients in the study, the risk adjuster accuracy,
the degree of confounding, and the true treatment ef-
fect. We sampled with replacement either n = 1,000, or
n =10,000 cases. To determine whether a patient died
during each simulation, we performed a Bernoulli trial
for each patient, setting the patient’s risk of death as the
probability of a positive trial result. For patients who did
not receive the treatment, their risk of death was set to
their baseline risk. For patients who were randomly
assigned to receive the treatment, their risk was adjusted
based on the treatment’s true effect.

To determine the treatment’s measured effect during
each simulation, a logistic regression of the treatment on
death was performed, using the risk adjuster to control
for confounding. Guided by the measured treatment ef-
fect and statistical significance of the result, false nega-
tive rates and false harm rates were calculated for each
set of simulation parameters. False negative studies in-
correctly concluded that the treatment had no effect on
mortality (P-value >0.05) when the treatment was truly
beneficial (true OR <1.0). False harm studies incorrectly
concluded that treatment’s odds of mortality were statis-
tically significantly greater than 1.0 (P-value <0.05) when
the treatment was either safe (true OR = 1.0) or provided
true benefit (true OR <1.0).

We calculated the average measured OR for each set of
simulations to present the relationship between risk ad-
juster accuracy and measured treatment effect. We also
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described the range of ORs possible for each set of pa-
rameters, presenting the median, intra-quartile, and 95™
percentiles in box and whisker plots [17]. All data man-
agement and simulations were conducted in Stata 13
(College Station, Texas). The sample code for this analysis
is available in Additional file 1 in the online supplemen-
tary material. This simulation work did not use individual
patient data, nor involve any interaction with patients. As
such, it did not require ethical approval or require any pa-
tient consent.

Results

The distribution of baseline risk for patients receiving
non-postoperative mechanical ventilation, as well as the
distribution of risk after treatment with a treatment with
an OR of 0.6 is shown in Figure 1. For a patient with the
median baseline risk, receiving a treatment with an OR
of 0.6 would decrease their risk of death from 35% to
24%, while receiving a treatment with an OR of 0.8
would decrease their risk from 35% to 30%. In an un-
adjusted analysis, if the true treatment effect (OR) was 0.6,
studies measured the treatment’s effect accurately when
no confounding was present, but measured the effect as
1.0 with low confounding and 1.6 with high confounding.
Similarly, when the treatment effect (OR) was 0.8,
unadjusted analysis of studies with no confounding mea-
sured the effect accurately, but measured the effect as 1.3
with low confounding and 2.0 with high confounding.

In simulated studies of safe treatments (true OR = 1.0),
studies could make one of two conclusions: correctly
conclude the treatment had no association with mortal-
ity or incorrectly conclude the treatment was harmful.
When confounding was absent, studies concluded the
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Figure 1 Distributions of risk of death among the patients used in the
Monte Carlo simulations. The gray distribution represents the baseline
risk of death while the blue distribution represents the risk after
administration of a treatment with an odds ratio of 0.6 for mortality.
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treatment was harmful 5% of the time, which was ex-
pected because the threshold for statistical significance
(P-value) was set at 0.05 (Figure 2A and B). The rates of
studies detecting a false harm increased as the risk ad-
juster accuracy decreased, especially in high confounding
scenarios. Using a risk adjuster with an AUROC of 0.70,
approximately half of studies of n = 1,000 would report a
statistically significant harm for a truly safe treatment
due to residual confounding by indication in the low
confounding scenarios, rising to nearly 90% if there was
high confounding. When study size was 10,000, however,
studies detecting false harm rapidly increased to 100% in
all scenarios (Figure 2B). In these data, risk adjusters
with an AUROC of 0.76 were generally protected from
obtaining incorrect results.

In simulated studies of truly beneficial treatments (true
OR of 0.6 or 0.8), studies could make one of three con-
clusions: the treatment had a statistically significant
benefit, the treatment had no effect (false negative), or
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the treatment had a statistically significant harm (false
harm). If the true treatment effect was an OR of 0.8,
studies with a sample size of 1,000 had high false nega-
tive rates in low confounding scenarios, even with good
risk-adjustment (Figure 3A). In high confounding sce-
narios, studies had high false negative rates when risk-
adjustment was good but high false harm rates when risk
adjustment was poor (Figure 3B). Studies of 10,000 pa-
tients with good risk adjustment were generally able to
detect the treatment’s beneficial effect (Figure 3C). How-
ever, as risk adjustment worsened, false negative rates rose
quickly in studies of 10,000 patients in both low and high
confounding scenarios, followed by increasing rates of de-
tecting false harm (Figure 3C and D).

Because readers not only consider the statistical signifi-
cance but also the magnitude of the OR when interpreting
a result, the association between the risk adjuster accuracy
and the measured ORs are shown in Figure 4. In all con-
founded studies, the average measured OR increased as
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Figure 2 Rates of falsely concluding a safe treatment (odds ratio = 1.0) caused statistically significant harm among simulated cohort studies.
(A) Rates in studies of n= 1,000 and (B) rates in studies of n=10,000. AUROC, area under the receiver operator characteristic curve.
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Figure 3 Rates of falsely concluding a beneficial treatment (odds ratio = 0.8) caused no benefit (false negative) or statistically significant harm (false
harm) among simulated cohort studies. (A) Rates in low confounding scenarios of n = 1,000. (B) Rates in high confounding scenarios of n = 1,000.

(C) Rates in low confounding scenarios of n=10,000. (D) Rates in high confounding scenarios of n = 10,000. AUROC, area under the receiver operator
characteristic curve.
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risk-adjuster accuracy decreased, although this rise was
faster when confounding was high. When the treatment’s
true effect was an OR=0.6, the mean measured OR
crossed 1.0 when the AUROC was 0.60 in low confound-
ing scenarios, but crossed 1.0 when the AUROC was 0.70
in high confounding scenarios. When the treatment’s true
effect was an OR=0.8, the mean measured OR crossed
1.0 when the AUROC was 0.70 in low confounding sce-
narios, but crossed 1.0 when the AUROC was 0.72 in high
confounding scenarios.

Figure 5 depicts the range of measured treatment effects
among simulated studies of 1,000 patients, including the
interquartile range and 95% interval estimates. When
confounding was low and risk adjustment was poor
(AUROC = 0.6), the 95% interval range of measured
ORs was 0.73 to 1.26 when the treatment’s true OR =
0.6, 0.95 to 1.59 when the treatment’s true OR=0.8,
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and 1.12 to 1.87 when the treatment’s true OR=1.0
(Figure 5A). In high confounding scenarios, the 95% inter-
val range of the estimate was both wider and higher.
When risk adjustment was poor (AUROC = 0.6), the 95%
interval range was 1.05 to 1.83 when the true OR=0.6,
1.34 to 2.33 when the true OR=0.8, and 1.61 to 2.77
when the true OR = 1.0 (Figure 5B).

Finally, when we repeated the analysis in the cohort of
patients with a bimodal distribution of risk, the key
difference in the results was the level of risk adjust-
ment required to protect against obtaining inaccurate
results. While an AUROC of 0.76 protected studies
using the mechanical ventilation cohort, the bimodal
distribution required an AUROC of 0.85 in large studies
with high confounding (results provided in Additional
file 1 in the online supplement, Table S3, Table S4,
Figure S1, Figure S2).

AUROC
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Discussion

In the current study, we simulated observational studies
that measured the association between a hypothetical
treatment and mortality, when confounding by severity
of illness was present. Although we identified AUROC
values that protected against obtaining incorrect results,
the accuracy of risk-adjustment necessary depended on
the population studied, study size, and degree of con-
founding. In scenarios where the hypothetical treatment
had no association with mortality, or scenarios when the
treatment was truly effective, studies were frequently un-
able to measure its true effect. Studies often concluded
the treatment caused statistically significant and clinically
meaningful harm as a result of inadequate risk adjust-
ment. Finally, our study illustrated how larger sample size
increases the risk of confounding if larger sample sizes are
not accompanied by better risk adjustment.

There has been an increasing dissatisfaction with RCTs
in critical care because of their difficult implementation,
the low number of positive trial results [18,19], and signifi-
cant concerns regarding their generalizability to actual pa-
tients cared for in clinical practice [20]. Commentators
have gone as far as to question the RCT’s role as the high-
est form of evidence in critical care [21], favoring a more
measured balance between RCTs and well-conducted ob-
servational studies [22]. Our current study adds an im-
portant caveat to the ongoing conversation that weighs
the relative value of observational studies and RCTs as
clinical evidence [23]. We demonstrate that confounding
by severity of illness is difficult to overcome without
highly accurate risk adjustment, and that with large sam-
ple sizes there is greater risk of obtaining incorrect results.
Prevailing wisdom suggests that when strong associations
are measured in observational studies, they are unlikely to
be fully attributed to confounding, as strong confounders
are likely to be recognized, measured and controlled for in
the analysis. However, our study suggests that in certain
scenarios, even large effect sizes can be entirely due to
confounding, even after risk-adjustment and despite only
modest levels of confounding.

Highly accurate severity-of-illness scores have been de-
veloped for use in critical care, but these scores typically
perform best when analyzing general ICU populations
and are less reliable in patient subgroups. In a study of
overall ICU mortality rates, acute physiology and chronic
health evaluation (APACHE)-IV, simplified acute physi-
ology (SAPS)-II, and mortality prediction model MPM
had AUROC’s of 0.89, 0.87, and 0.81 respectively [24],
values that would have reduced the risk of false positives
in the current study. Even APACHE II performed well in a
general ICU population (AUROC = 0.81) compared to the
Charlson comorbidity index (AUROC = 0.63), a score that
does not incorporate acute physiology parameters [25].
Yet, there are many examples of scores losing accuracy in
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particular patient populations, including patients with hu-
man immunodeficiciency virus [26], cardiogenic pulmon-
ary edema [27], and trauma patients [28]; even APACHE-
IV significantly under- or over-predicted mortality in 13%
of medical conditions during its validation [10]. If authors
report the AUROC of the risk adjuster in the patient sam-
ple they used during their particular analysis, it would help
facilitate interpretation - our study examined internal
AUROC:s of the risk adjuster in the population studied,
not the AUROC: in the original validation population.

The availability of larger and more detailed databases of
critically ill adults is heralding a big-data revolution in
critical care [6,29,30]. These highly granular clinical data
might significantly bolster observational research in crit-
ical care by improving the accuracy of clinical measure-
ment. Yet, the current study should remind researchers
that studies utilizing large datasets are perhaps even more
vulnerable to the fundamental problems of observational
studies. As sample size increases, the ability to obtain
results of high statistical significance increases, regardless
of whether the results are real or biased. Thus, researchers
must leverage these highly detailed clinical data to develop
even more accurate methods of risk adjustment and to
minimize unmeasured confounding for big data to genu-
inely revolutionize clinical research in critical care.

Our study should be interpreted in the context of sev-
eral limitations. These results are simulated models of
hypothetical observational studies, and not evidence that
the result of any specific risk-adjusted observational study
is confounded. Indeed, the extent of confounding cannot
be measured or reported in any specific observational
study. Whenever simulations are performed, choices must
be made when modeling true events. In our simulations,
we set the hypothetical treatment to be safe or beneficial,
but more likely administered to patients with a higher
baseline risk of death. Another scenario of interest is when
a treatment with no effect on outcome is more likely ad-
ministered to patients of lower risk. As this scenario is the
symmetric inverse of what we studied, we suspect that
similarly confounded studies with poor risk adjustment
would falsely conclude the treatment was beneficial. The
current study also only focused on problems with model
discrimination (the risk adjuster accuracy), but poor
model calibration could also cause problems in certain sit-
uations, especially if a study focused on a patient subgroup
that was poorly predicted by the model. These simulations
investigated confounding by severity of illness, where
strong correlation between exposure, outcome and con-
founder led to large biases in effect estimates. Other forms
of confounding, which may be less strongly correlated
with exposure and outcome, would likely lead to less
biased results.

Multiple factors besides risk adjustment accuracy
should be considered when evaluating the validity of any
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observational research study. Study design is particularly
important, as well-designed observational studies may
be able to mitigate risk of confounding. By designing a
study that makes comparisons between patients matched
to be more similar, or situations where a physician does
not choose a particular treatment based on an assess-
ment of risk (particularly with natural experiments or in-
strumental variable designs that take advantage of the
randomness induced by many styles of medical practice)
confounding may be minimized.

Conclusions

Our study demonstrates how confounding by severity of
illness may be particularly problematic for observational
studies in critical care. Even after employing conventional
risk-adjustment, studies can obtain strikingly inaccurate
results in certain circumstances. Providing the AUROC of
the risk adjustment used on patients in the study may help
assess a study’s risk of obtaining false positive results.
Studies suspected to be at high risk for confounding based
on clinical grounds should be interpreted cautiously, par-
ticularly for highly unexpected results.

Key messages

e Confounding can lead to major errors in effect size
estimates, making a safe treatment (OR for mortality =
1.0) appear harmful, and a beneficial treatment (OR
for mortality <1.0) appear ineffective or harmful. Large
treatment effects easily construed as true associations
can be measured solely due to confounding, even in
the presence of some degree of risk adjustment

e If study authors provide the AUROC of the risk
adjustment used in the study analysis, it may help
facilitate an evaluation of a study’s risk for
confounding by severity of illness.

e Sample size increases the statistical significance of
the results, whether confounded or not, thus larger
sample sizes must be accompanied by better risk
adjustment to prevent false discovery.

e The accuracy of risk adjustment at which an
observational study was protected is cohort- and
context-specific, and varied from >0.75 for some
studies to >0.85 in studies with other distributions
of risk.

Additional file

Additional file 1: Supplemental analysis: when do confounding by
indication and inadequate risk adjustment bias critical care studies?
This document provides the data used to create Figure S2 and Figure S3
in the main manuscript. It includes the results of simulations performed
using the cohort of patients with bimodal distribution of risk. It also
provides the sample code of the statistical simulations.
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