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mediator profiles as a potential prognostic
approach for septic shock in the intensive
care unit
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Abstract

Introduction: Septic shock is a major life-threatening condition in critically ill patients and it is well known that
early recognition of septic shock and expedient initiation of appropriate treatment improves patient outcome.
Unfortunately, to date no single compound has shown sufficient sensitivity and specificity to be used as a
routine biomarker for early diagnosis and prognosis of septic shock in the intensive care unit (ICU). Therefore,
the identification of new diagnostic tools remains a priority for increasing the survival rate of ICU patients. In this
study, we have evaluated whether a combined nuclear magnetic resonance spectroscopy-based metabolomics
and a multiplex cytokine/chemokine profiling approach could be used for diagnosis and prognostic evaluation of
septic shock patients in the ICU.

Methods: Serum and plasma samples were collected from septic shock patients and ICU controls (ICU patients
with the systemic inflammatory response syndrome but not suspected of having an infection). 1H Nuclear magnetic
resonance spectra were analyzed and quantified using the targeted profiling methodology. The analysis of the
inflammatory mediators was performed using human cytokine and chemokine assay kits.

Results: By using multivariate statistical analysis we were able to distinguish patient groups and detect specific
metabolic and cytokine/chemokine patterns associated with septic shock and its mortality. These metabolites and
cytokines/chemokines represent candidate biomarkers of the human response to septic shock and have the
potential to improve early diagnosis and prognosis of septic shock.

Conclusions: Our findings show that integration of quantitative metabolic and inflammatory mediator data can be
utilized for the diagnosis and prognosis of septic shock in the ICU.
Introduction
Approximately 18 million cases of sepsis occur every
year worldwide with a mortality rate reaching almost
30% [1]. However, it has been reported that detecting
sepsis, especially at an early stage, improves patient
outcome and reduces the mortality rate [2]. Therefore, it
is critical to identify new diagnostic tools and develop
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prognostic approaches to improve patient care and
decrease the sepsis death rate.
In recent years, several studies have been performed to

describe and identify biomarkers that could be used in
the diagnosis and management of sepsis [3]. This previous
work has suggested that sepsis could be diagnosed by
measuring increased levels of particular proteins in blood
such as plasma C-reactive protein, inflammatory cytokines
(for example tumor necrosis factor α (TNF-α), interleukin-1
(IL-1) and IL-6), procalcitonin or lipopolysaccharide-binding
protein [4]. It has also been reported that the concentrations
of lactate or different plasma amino acids can be elevated
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during the disease [3,5,6]. However, insufficient sensitivity
and specificity of the reported compounds currently
impede their usage as standard tools for early diagnosis of
sepsis [3,7,8]. Therefore, integrated and multifaceted
medical approaches supported by effective diagnostic tools,
such as a combination of various biomarkers, may improve
the identification and the prognosis for sepsis in intensive
care units (ICUs) [3,9]. Such an integrated approach, based
on merging different data sets, could also create broader
and more detailed insight into the nature of the disease
than can be achieved using one individual approach.
In this study, we have combined metabolomics and

multiplex cytokine/chemokine data to investigate its
potential for the diagnosis and prognosis of septic shock.
It has previously been demonstrated that nuclear magnetic
resonance (NMR) spectroscopy-based metabolomics is a
very efficient approach for the discovery of molecular
markers of sepsis in animals models [10-12] and within
humans [13,14]. In addition, it has been reported that
multiplex analysis of cytokines can be used for biomarker
identification and quantification in lipopolysaccharide-
stimulated human plasma samples [15]. However, only a
limited number of studies have demonstrated success in
using a multiplex cytokine/chemokine profiling approach
for the prediction of sepsis in clinical settings [16-18]. More-
over, to date integration of metabolomics and inflammatory
mediator data to identify correlations between immune
features and metabolic phenotypes during infection has only
been described in an animal model [19]. By using 1H NMR
spectroscopy and multiplex technology we were able to
identify and quantify specific metabolites and inflammatory
mediators potentially involved in the septic shock response.
Using multivariate statistical analysis we could generate
powerful models for diagnosis and prognosis of septic
shock. This study presents a promising approach for
improving patient care and patient outcome in the ICU
and deserves further evaluation in other clinical settings,
such as the emergency department.

Methods
Sample collection
The study received approval from the Conjoint Health
Research Ethics Board of the University of Calgary. The
samples were collected in accordance with the guidelines
of the Tri-Council policy statement and as part of the
Critical Care Epidemiological and Biological Tissue
Resource. All patients, or their next of kin, provided
written informed consent for participation in this study.
The protocol of sample collection has been previously
described in detail [14]. Briefly, blood was drawn from
patients more than 18 years old that were admitted
to the ICU of the Foothills Medical Center or the
Peter Lougheed Hospital in Calgary (AB, Canada). The
study includes samples collected from septic shock patients
who met criteria for septic shock as defined by the
American- European consensus statement on sepsis
[20,21] and samples obtained from ICU control patients
(ICU patients with the systemic inflammatory response
syndrome (SIRS) but not suspected of having an infection).
All samples were collected within 24 hours of patient
admission to the ICU. Serum was obtained by collecting
the blood into a sterile silicone-coated vacutainer (BD,
Franklin Lakes, NJ, USA) and allowing the blood to clot for
45 min at room temperature. Plasma was obtained by
collecting the blood into a sodium-heparin-containing
vacutainer (BD) and processed immediately after collection.
The samples were then centrifuged at 1200 x g for 15 min,
collected into one each 15 mL tube and frozen at −80°C.
The samples were thawed once and aliquoted into 250 μL
aliquots that were stored at −80°C until used.

NMR spectroscopy and metabolite concentration profiling
The protocol for the sample preparation and NMR
spectral acquisition has been previously described in detail
[13,14]. Briefly, filtration (3-kiloDalton (kDa) NanoSep
microcentrifuge filters; Pall, Inc., East Hills, NY, USA) of
serum samples (V = 250 μL) was followed by adding to
the filtrated samples 80 μL of phosphate-buffered solution
(0.5 M NaH2PO4 containing 2.5 mM 2,2-dimethyl-2-
silapentane-5-sulfonate, DSS), 10 μL of sodium azide
(1 M NaN3) and D2O. The final volume of each sample
was 400 μL and the pH was in the range of 7.0 ± 0.04.
NMR spectra were obtained on a 600 MHz Bruker
Ultrashield Plus NMR spectrometer (Bruker BioSpin
Ltd., Milton, ON, Canada) using a standard Bruker 1D
spectroscopy presaturation pulse sequence (noesypr1d)
with optimal water suppression and a mixing time of
100 ms [22,23]. The spectra were manually corrected
(phasing, baseline correction, referencing to the DSS peak
at 0.0 ppm) in the Chenomx NMR Suite 6.1 software
(Chenomx Inc., Edmonton, AB, Canada) [23]. The
targeted profiling methodology was used for metabolite
identification and quantification [23]. If the metabolite
peaks could not be distinguished from the noise in NMR
spectra, the peaks were assigned with zero value and
considered as missing data.

Cytokine/chemokine profiling
The analysis of the inflammatory mediators in human
plasma samples was performed using two human cytokine
and chemokine assay kits (Bio-Plex Pro Human Cytokine
21-plex Assay and Bio-Plex Pro Human Cytokine 27-plex
Assay), which were obtained from Bio-Rad Laboratories,
Inc. (Hercules, CA, USA). Samples were assayed according
to the manufacturer’s specifications and the plates were
read on a Luminex 200 apparatus (Applied Cytometry
Systems, Sheffield, UK). The acquisition and analysis of
these samples were performed with Bio-Plex Manager 6.0
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(Bio-Rad Laboratories, Inc.). If the coefficient of variance
between two replicates was more than 20% the data was
considered as a missing value.

Statistical modeling
The SIMCA-P+ 12.0.1 software (Umetrics, Malmo,
Sweden) was applied to create and analyze multivariate
models. All metabolites or inflammatory mediators
with more than 50% missing values were excluded
from the analysis. Data preprocessing (median fold change
normalization, logarithmic transformation, centering and
unit variance scaling [24]) was first conducted separately
for the metabolomics and cytokine/chemokine dataset
and then for the combined dataset.
Principal component analysis (PCA) was used to

summarize the variation in each data matrix and to
show outlying samples, that is samples that are situated
outside of the 95% confidence interval of the Hotelling’s
T-squared distribution (elliptic or spherical area in the
score scatter plots) [25]. Following this, supervised
orthogonal partial least squares discriminant analysis
(OPLS-DA) was applied [26]. For the integrated meta-
bolomics and cytokine/chemokine data and for the
age-sex-matched (age within 5 years) septic shock survivors
and nonsurvivors, the OPLS-DA models were based on
potentially relevant metabolites selected in two-sample t
tests with P value less than 0.2 as a threshold [27].
To validate the statistical significance of each OPLS-DA
model R2Y and Q2 metrics were calculated based on
sevenfold cross-validation (CV) [28] (for the mortality
model a fourfold CV was used due to the smaller number
of samples [25]). The R2Y parameter describes the
percentage of variation explained by the model and Q2
describes the predictive ability of the model. The difference
between R2Y and Q2 values provides reliable information
about the model’s goodness-of-fit and if the difference
exceeds 0.2 to 0.3 it indicates an overfitted model and
the presence of irrelevant predictors [25].
To reveal the most important metabolites and cytokines/

chemokines associated with septic shock and mortality
the OPLS-DA regression coefficients were calculated
from the input data. The OPLS coefficients were multiplied
by the scaling weights for better interpretation [29] and
only metabolites and cytokines/chemokines with significant
changes in concentration (P <0.05) were considered
as potential biomarkers.
Additionally, an area under the receiver operating

characteristic curve (AUROC) [30] was calculated for
each OPLS-DA model (Metz ROC Sofware, The University
of Chicago, IL, USA). Specificity, sensitivity and accuracy
were determined on the basis of sample class prediction
during the cross-validation (Y-predcv, predictive Y variables,
in the SIMCA-P+ software). The results of the ROC ana-
lysis were then compared to the predictive values of acute
physiology and chronic health evaluation (APACHE) II
scores [31] and sequential organ failure assessment (SOFA)
scores [32] collected for the patients upon admittance
to the ICU.

Results
Profiled samples
In total 57 samples (37 septic shock patients and 20 ICU
controls) were retrospectively selected from the ICU
tissue bank for this study. The demographic and clinical
characteristics of all the patients enrolled in the study are
shown in Table 1. Overall 60 metabolites and 45 cytokines/
chemokines were assigned and profiled in the samples. A
total of 1.8% missing values was observed in the NMR
dataset and a total of 0.7% missing values was detected in
the cytokine/chemokine dataset. In both datasets the
missing values were randomly distributed. We have
recently already presented an analysis of the metabolomics
data for a slightly larger cohort [14]. However, the number
of samples analyzed here, as well the normalization
applied to the NMR data, are distinct from the previ-
ous study. The different normalization was required
to allow for the subsequent integration of the NMR
and multiplex data.

Predictive models for metabolomics and
cytokine/chemokine data
Figure 1A presents the score scatter plot for the com-
bined dataset. Similar plots for the individual NMR and
cytokine/chemokine datasets are shown in Additional
file 1. Three principal components (PCs) were calculated
to build the PCA models for metabolomics, cytokine/
chemokine (Additional file 1) and the combined dataset
(Figure 1A).The percentage of variation explained by
each component is as follows: for the metabolomics
data: PC1 = 13.6%, PC2 = 12.1% and PC3 = 11.5%; for the
cytokine/chemokine data: PC1 = 34%, PC2 = 12.4% and
PC3 = 6.8%; and for the combined dataset: PC1 = 18.1%,
PC2 = 11.1% and PC3 = 9.5%. Some of the septic shock
samples (one sample for the metabolomics and cytokine/
chemokine model and three samples for the combined
dataset) appear far outside of the area of 95% confidence
interval of the Hotelling’s T-squared distribution. It is well
known that such outliers may disturb the model and
incorrectly influence the results [25], thus in the next steps
of statistical analysis the data for these samples were
excluded. The outlying sample detected in the NMR
dataset was exactly the same as in the cytokine/chemokine
model. This same outlier was also observed in the
combined dataset and from the clinical data this outlying
sample was collected from the oldest patient in the
whole cohort (88 years old) who was assessed with
the admission SOFA score = 0 and who did not survive
during the ICU stay.



Table 1 Demographic and clinical characteristics of the enrolled patients

Characteristic ICU control patients Septic shock patients

Number of patients 20 37

Males : Females (n) 15 : 5 20 : 17

Age (years) 65.5 (55.5–71) 62 (56–73)

Admission APACHE* 14 (12.5–16.5) 23 (16–31)

Admission SOFA 8 (4.5–9) 9 (5.0–12)

Primary ICNARC code (n) CABG for acute crescendo or unstable angina: 9 Septic shock: 26

CABG for chronic angina: 4 Bacterial pneumonia: 4

CABG for acute myocardial infarction: 2 Small bowel infarction due to herniation,
volvulus or adhesions: 1

Spinal stenosis: 2 Cor pulmonale: 1

Chronic angina: 1 Primary peritonitis: 1

Traumatic rupture or laceration of spleen: 1 Infective arthritis: 1

Burns: 1 Inhalation pneumonitis (gastrointestinal contents): 1

Cystitis, pyocystis or urethritis: 1

Appendicitis or appendix abscess: 1

Length of ICU stay* (days) 1.6 (1.0–2.5) 5.5 (3.1–9.9)

Patients with organ insufficiency* (n, %) 1 (5%) 11 (30%)

Primary focus of infection (n) n/a Lung: 14

Gynecologic or intra-abdominal: 12

Catheter related bloodstream infection: 4

Urinary tract: 3

Bone/joint: 3

Head/ears/nose/throat: 1

Confirmed infection (n, %): n/a Gram-positive bacteria: 12 (32%)

Gram-negative bacteria: 12 (32%)

Deaths* (n, %) 0 14 (38%)
*Statistically significant feature (P <0.05). Primary Intensive Care National Audit and Research Centre (ICNARC) code, acute physiology and chronic health
evaluation (APACHE) and sequential organ failure assessment (SOFA) scores were assessed upon admittance to the ICU (intensive care unit). All data are median
(interquartile range) unless otherwise noted. CABG, coronary artery bypass surgery.
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Next, the supervised OPLS-DA method was applied,
including 56 samples for metabolomics and cytokine/
chemokine dataset (Additional file 2) and 54 samples for
the combined dataset (Figure 1B). The OPLS-DA score
scatter plots demonstrate that the samples are very
well distinguished, showing the best separation for
the combined dataset. The values of R2Y and Q2
metrics are high in all cases with the highest values for
the combined dataset (metabolomics data: R2Y = 0.75,
Q2 = 0.68; cytokine/chemokine data: R2Y = 0.74, Q2 = 0.66;
combined dataset: R2Y = 0.85, Q2 = 0.74). The ‘Predicted
vs. Observed’ plot of the combined dataset (Figure 1C)
shows that all of the septic shock samples were correctly
assigned during the model construction, which indicates a
strong predictive ability of the model for septic shock.
Additionally, we applied OPLS-DA for the prediction

of ICU patient outcome. From the available septic
shock samples we selected eight nonsurvivors and eight
age-sex-matched survivors. The median age of these
patients was 63 (59.8 to 77), admission APACHE II
score: 25.5 (17.5 to 31.3), admission SOFA score: 10.5
(7 to 12.5) and the length of ICU stay: 6.4 days (3.5
to 9.6 days). The score scatter plot (Figure 2A) and
‘Predicted vs. Observed’ plot (Figure 2B) reveals that
septic shock survivors are very well separated from
the nonsurvivors. The R2Y, Q2 metric and AUROC
have very high values: 0.94, 0.74 and 1.0 respectively.
A summary of the quantitative model evaluation results
for the various OPLS-DA models that were constructed is
presented in Table 2.
Following a suggestion of an anonymous reviewer of

this work we also recalculated the supervised models
including the outliers identified in the PCA. This only had
a minor influence on the models (see Additional file 3).

Biomarkers
As shown in Figure 3, fifteen metabolites and eight
inflammatory mediators contribute significantly to the



Figure 1 Septic shock patients versus ICU controls. Statistical analysis for septic shock patients (red) and ICU controls (green) based on
the combined metabolomics and cytokine/chemokine dataset. (A) Three-dimensional PCA score scatter plot; (B) OPLS-DA score scatter plot;
(C) ‘Predicted vs. Observed’ plot. The groups are well clustered along the axes of the three principal components in the three-dimensional PCA
plot. Three septic shock samples are placed outside the sphere that indicates the 95% confidence interval of the Hotelling’s T-squared distribution.
ICU, intensive care unit; OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principal component analysis.
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Figure 2 Mortality model. The OPLS-DA score scatter plot (A) and the ‘Predicted vs. Observed’ plot (B) for septic shock nonsurvivors (black dots)
and age-sex-matched survivors (black circles) based on the combined metabolomics and cytokine/chemokine dataset. Both groups are well separated
along the first PLS component and none of the nonsurvivors were predicted as a survivor. In figure 2B only seven dots are visible instead of eight
because two samples had a very similar predicted value and their symbols overlap. OPLS-DA, orthogonal partial least squares discriminant analysis;
PLS, partial least squares.
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Table 2 Statistical analysis results

Model Data Sensitivity : Specificity α β PPV : NPV ACC AUROC

Septic shock vs. ICU controls Metabolomics 0.92 : 1.0 0 0.08 1.0 : 0.87 0.95 0.99 ± 0.01

Cytokines/chemokines 0.94 : 0.90 0.1 0.06 0.94 : 0.90 0.93 0.99 ± 0.01

Combined 0.94 : 1.0 0 0.06 1.0 : 0.91 0.96 1.0

APACHE 0.82 : 0.42 0.58 0.18 0.71 : 0.57 0.67 0.74 ± 0.07

SOFA 0.85 : 0.25 0.75 0.15 0.66 : 0.50 0.63 0.64 ± 0.07

Nonsurvivors vs. survivors Combined 1.0 : 0.88 0.13 0 0.89 : 1.0 0.94 1.0

APACHE 0.63 : 0.75 0.25 0.38 0.71 : 0.67 0.69 0.78 ± 0.12

SOFA 0.75 : 0.63 0.38 0.25 0.67 : 0.71 0.69 0.81 ± 0.11

Comparison of statistical measures for septic shock patients vs. ICU controls and septic shock nonsurvivors vs. septic shock survivors models based on
metabolomics data, cytokine/chemokine data, combined dataset (metabolites together with inflammatory mediators), acute physiology and chronic health
evaluation (APACHE) and sequential organ failure assessment (SOFA) scores. The receiver operating characteristic (ROC) curve plots for each dataset are shown in
Figure 4. α, false positive rate; β, false negative rate; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; AUROC, area under the receiver
operating characteristic curve (value ± standard error as calculated from the ROC curves); ICU, intensive care unit.
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separation between septic shock samples and ICU
controls. Eight metabolites revealed altered concentrations
in septic shock patients (phenylalanine, myo-inositol,
isobutyrate, 3-hydroxybutyrate, urea, O-acetylcarnitine,
2-hydroxybutyrate and proline) while the concentra-
tions of propylene glycol, threonine, valine, arginine,
glutamate, methanol and glucose were decreased.
Figure 3 The OPLS-DA regression coefficient plot. Positive values of coeffic
cytokine/chemokine concentrations in the septic shock samples (fold change >
metabolite and cytokine/chemokine concentrations, as compared to ICU contro
are shown (P <0.05, two-sample t test). ICU, intensive care unit; OPLS-DA, orthog
Septic shock patients showed also high levels of
interferon-inducible protein-10 (IP-10), hepatocyte
growth factor (HGF), interleukin-18 (IL-18), IL-1
and IL-2 receptor antagonists (IL-1Ra, IL-2Ra) and
decreased concentrations of IL-1α, monocyte-specific
chemokine 3 (MCP-3) and tumor necrosis factor
beta (TNF-β).
ients (the upper part of the diagram) indicate increased metabolite and
1) while negative values (the lower part of diagram) present a decrease in
ls (fold change <1). Only significant metabolites and cytokines/chemokines
onal partial least squares discriminant analysis.
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Additionally, we were able to reveal metabolic and
cytokine/chemokine factors associated with septic
shock mortality (Additional file 4). Elevated levels of
2-hydroxyisovalerate, fructose, IL-8, IL-9 and growth
regulated oncogene alpha (GRO-α) and decreased concen-
trations of TNF-β, beta-nerve growth factor (β-NGF) and
dimethylamine were detected in septic shock nonsurvivors
compared to the survivors.
Comparison with ICU scoring systems
In order to provide an indication of the potential clinical
usefulness of our approach we made a comparison to
commonly used clinical scoring evaluations. The results of
ROC analysis indicate the best sensitivity, specificity,
accuracy and the highest AUROC values for the integrated
metabolomics-cytokine/chemokine approach compared to
the diagnostic and prognostic power of APACHE II and
SOFA scores (Table 2, Figure 4 and Additional file 5).
Discussion
The present study is focused on utilizing a combined
NMR-based metabolomics and multiplex cytokine/
chemokine profiling approach as a potential prognostic
evaluation of septic shock. These techniques have several
unique advantages over other diagnostic tools. First,
quantitative NMR-based metabolomics and bead-based
multiplexing for cytokine/chemokine analysis allows for
the quantitative measurement of more than 100 different
biomarkers from a sample volume less than 250 μL. The
ability to maximize this minimal sample volume is essential,
as obtaining large samples from critically ill patients,
particularly pediatric patients can be difficult. Second, these
techniques detect even very small changes in analyte
concentration, allowing for the identification of even
subtle variations in the patient’s biopattern. Finally,
through the analysis of more than 100 biomarkers, we
have been able to identify several patterns that otherwise
would not have been observed if a smaller, more finite,
screen of previously identified biomarkers had been used.
Through the use of multivariate statistical analysis we

identified a specific biopattern associated with an early
recognition of septic shock. We detected elevated levels
of eight metabolites and five inflammatory mediators.
Increased concentrations of isobutyrate, myo-inositol,
proline and urea indicate hepatic failure and kidney
injury [33-36]. 3-hydroxybutyrate, O-acetylcarnitine
and 2-hydroxybutyrate are metabolites which correlate
to energy demands resulting from rising metabolic
requirements and inflammatory responses associated
with disease conditions [36,37]. An elevated level of
phenylalanine is the result of an accelerated rate of
protein breakdown, as often caused by infections and
inflammatory states [38].
Additionally, the septic shock patients exhibited a
remarkable increase in the levels of IP-10 and HGF.
It has already been reported that the concentration of
IP-10 was elevated in plasma samples of septic shock
patients compared to SIRS patients and that IP-10
might serve as a diagnostic marker [39]. Moreover, it
was found that the HGF level was significantly higher in
sepsis patients than in the SIRS groups without infection
[40], which correlates with our results. We also observed
higher levels of IL-18, IL-1Ra and IL-2Ra in septic shock
patients as compared to ICU control patients. The proin-
flammatory cytokine IL-18 has already been characterized
as an important regulator of the innate and acquired
immune responses [41]. Interestingly, IL-1Ra and IL-2Ra
are not proinflammatory molecules per se, but instead
represent the body’s response to severe inflammation.
IL-1Ra is a cytokine and is an IL-1 receptor antagonist,
which has been demonstrated to block the proinflammatory
activities of IL-1α and IL1-β [42,43]. In contrast, IL-2Ra
represents a soluble form of the IL-2 receptor alpha chain
that has been released from cell surfaces through the extra-
cellular proteolysis of the IL-2 receptor and functions to
bind and block IL-2 resulting in diminished IL-2 signaling
[44]. Although these molecules are not proinflammatory
themselves, they have been associated with a number of
inflammatory diseases and sepsis [45,46] and as such have
been proposed to be markers of inflammation.
Furthermore, the concentration of seven metabolites and

three inflammatory mediators significantly decreased in
septic shock samples compared to the ICU controls. Low
levels of glucose and propylene glycol probably result from
the rapid oxidation of these metabolites into pyruvate and
reflect increasing energy demands during septic shock. The
decreased concentration of other compounds (threonine,
valine, arginine, glutamate, methanol) is primarily associated
with organ dysfunction and/or higher utilization of these
metabolites in the disease conditions [47-50]. The low level
of IL-1α seems to be directly related to the increased con-
centration of IL-1Ra detected in our study. Interestingly,
the level of TNF-β which dropped in septic shock samples
was also decreased in septic shock nonsurvivors compared
to the survivors in the mortality model. Therefore, a high
concentration of TNF-β in serum sample might indicate
lower morbidity and better outcome for the ICU patient.
The meaning of the decreased level of MCP-3 in septic
shock patients could not be explained as it is not well
understood how this chemokine is implicated in septic
shock. Clearly, further studies of MCP-3 are needed to
confirm its importance.
Nonetheless, many of the metabolites and cytokines/

chemokines we have observed to be statistically different
between septic shock patients and ICU control patients
have been previously identified as molecules of interest
in sepsis [3]. Furthermore, many of these molecules have



Figure 4 (See legend on next page.)
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Figure 4 The receiver operating characteristic (ROC) curve plots. The ROC plots for (A) septic shock patients vs. intensive care unit (ICU) controls
and (B) septic shock nonsurvivors vs. septic shock survivors models based on the metabolomics data, cytokine/chemokine data and the combined
dataset (metabolites together with inflammatory mediators), acute physiology and chronic health evaluation (APACHE) and sequential organ failure
assessment (SOFA) scores. Black line - fit line, grey line - empirical data, red dashed line - the chance curve. To further show the details of these curves
in the range of false positive fraction the Additional file 5 shows the ROC curves redrawn with a decimal logarithm scale for the horizontal axes.
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been tested as possible point-of-care diagnostic markers
in sepsis but none of the identified markers alone have
been adapted into a successful diagnostic test for sepsis
[3]. This failure is likely the result of the multifaceted
nature of sepsis; a marker that demonstrates significant
association with one group of septic patients may not
correlate with all septic patients. As a result, the use of
single biomarkers in diagnosis of sepsis has not, and
likely will not, result in the development of successful
point-of-care testing.
It has previously been demonstrated that applying

metabolomics or multiple cytokine assays separately al-
lows for an identification of specific markers associated
with sepsis severity. However, to date only metabolomics
studies of sepsis have described potentially predictive
values. The multiplex inflammatory mediators studies
did not propose any predictive model that might be used
for early diagnosis of septic shock [16]. Recently, another
study has assessed a multiple cytokine profiling approach
to distinguish SIRS and various forms of sepsis within a
group of emergency department patients [17]. Indeed, in
this study the authors were able to describe individual
mediators independently associated with septic shock.
However, the global statistical analysis could not identify
any significant differences between the patient groups. In
light of these previous reports, our integrated metabolite
and cytokine/chemokine study can represent a potentially
promising methodology for the prediction of septic shock.
The combination of biomarkers such as metabolites and
inflammatory mediators yields better results and predictive
values than studies previously published and models
constructed based on separate datasets only (Table 2).
Additionally, we were able to construct a model for

mortality prediction which represents a much better
prognostic ability than the commonly used APACHE II
and SOFA scores. It should be noted that the application
of multiple cytokine assays to predict septic shock outcome
has already been described [18]. However, these authors
could only observe a significant mortality odds ratio when
using the cytokine/chemokine data collected more than
24 hours after patient enrollment. In contrast, our results
are based on blood samples obtained at an earlier stage of
patient admission to the ICU (not more than 24 hours). It
is well known that the first hours following patient diag-
nosis are the most important for patient survival and
prognosis of patient outcome at this time is very crucial. A
similar approach has been described in a recent study in
which the authors attempted to integrate metabolomics,
proteomics and clinical variables to predict the survival of
adult sepsis patients [51]. Although they performed a
broad proteomics analysis by mass spectrometry, they
concluded that these results were at best semi-
quantitative and they could not incorporate them in
their predictive model. Moreover, they also mentioned
that their proteome analysis was not sensitive enough
to reliably measure cytokines/chemokines in their
samples. Since cytokines are known to play an important
role during sepsis, we have used a targeted and quantitative
cytokine/chemokine proteomics multiplex approach in this
study. Our data clearly illustrate that it is possible to
integrate quantitative metabolic and cytokine/chemokine
proteomic data in a bigger biomarker panel. Furthermore,
our study describes a mortality model that is only based
on integrated bio-fluid components. This approach may
be advantageous to avoid a possible bias associated with a
subjective diagnosis by critical care staff. Be that as it
may, our method can also easily be extended to include
quantitative clinical variables and severity scores.

Conclusions
This study indicates that an integrated metabolic and
cytokine/chemokine profiling approach of blood samples
might serve as a promising tool for the early diagnosis
and prognosis of septic shock during the first hours of
patient admission to the ICU. However, this study
should be considered as an initial step of applying
integrated metabolomics and inflammatory mediator
profiling approach in a clinical setting. Beyond doubt,
our results should be validated in other clinical settings
and within larger groups of patients to confirm its applic-
ability throughout different ICUs. Additionally, correlation
of metabolic and cytokine/chemokine profiles with the
severity of sepsis, as well as validation of the model
in an early sepsis patient population, would provide
further insight into disease mechanisms and could be
used to target new therapies in the future.

Key messages

� Integration of metabolic and inflammatory mediator
profiling data might serve as a reliable diagnostic
and prognostic tool for septic shock.

� A total of fifteen metabolites and eight inflammatory
mediators had a significant influence on the
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separation between septic shock samples and
ICU controls.

� A receiver operating characteristic analysis indicated
an excellent predictive ability of the integrated
metabolomics/inflammatory mediator models when
compared to the conventionally used ICU scoring
systems.

Additional files

Additional file 1: Three-dimensional PCA score scatter plots.
Three-dimensional PCA score scatter plots obtained for 37 septic shock
patients (red) and 20 ICU controls (green) based on the (A) metabolic
data and (B) cytokine/chemokine data. The groups are well clustered
along the axes of the three principal components. One septic shock
sample is placed outside the sphere that describes the 95% confidence
interval of the Hotelling’s T-squared distribution.

Additional file 2: OPLS-DA score scatter plots. The OPLS-DA score
scatter plots obtained for 36 septic shock patients (red) and 20 ICU
controls (green) based on the (A) metabolic data and (B) cytokine/
chemokine data.

Additional file 3: The summary table. Comparison of statistical
measures calculated for the supervised OPLS-DA models without excluding
outliers to the results presented in the manuscript.

Additional file 4: The OPLS-DA regression coefficient plot. Positive
values of coefficients (the upper part of the diagram) indicates increased
metabolite or inflammatory mediator concentrations in septic shock
nonsurvivor samples while negative values (the lower part of diagram)
present a decrease in metabolite or inflammatory mediator concentrations,
as compared to the age-sex-matched septic shock survivors. Only significant
metabolites are shown (P <0.05, two-sample t test).

Additional file 5: The receiver operating characteristic (ROC) curves
plotted with a decimal logarithmic scale for the horizontal axes. The
ROC plots for (A) septic shock patients vs. ICU controls and (B) septic
shock nonsurvivors vs. septic shock survivors models based on the
metabolomics data, cytokine/chemokine data and the combined dataset
(metabolites together with inflammatory mediators), APACHE (acute
physiology and chronic health evaluation) and SOFA (sequential organ
failure assessment) scores. Black line - fit line, red dashed line - the chance
curve (that is the diagonal of the ROC curve when plotted in linear scale).
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